您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于多尺度的自适应采样图像分块压缩感知算法

  2. 基于分块的压缩感知算法适用于图像信号的处理,通过平滑迭代阈值投影法可以快速重构图像,但存在低采样率下重构图像质量较差的缺点。基于全变差分的分块压缩感知算法,在一定程度上能提升重构效果,但降低了运算速度。针对以上算法的不足,提出基于多尺度的自适应采样图像分块压缩感知算法。根据小波分解后不同层对重构结果影响所占权重不同的特性,自适应分配给每一层不同的采样率,并在重构时将平滑迭代阈值投影法应用到每一层的每一个子带的分块上。实验结果表明,与传统的迭代阈值投影法相比在重构质量上提高了1~3 dB,在重构速
  3. 所属分类:其它

    • 发布日期:2020-10-16
    • 文件大小:295936
    • 提供者:weixin_38661128
  1. 多尺度分块的自适应采样率压缩感知算法

  2. 现有的自适应多尺度分块压缩感知算法忽略了高频信息在重建中的作用, 导致图像的边缘轮廓得不到充分重建; 并且在压缩分块过程中采用固定分块大小, 没有充分利用图像自身的稀疏性。针对上述不足, 提出一种多尺度分块的自适应采样率压缩感知算法。该算法充分利用小波变换后的高频信号和低频信号, 同时针对图像的固定尺寸分块进行改进。首先, 对低频部分利用自适应邻域特征的空域滤波算法消除块效应; 其次, 对高频部分依据纹理特征自适应选取图像块的大小, 实现样本块尺寸的自动划分和采样率的自适应; 最后, 分别对纹理
  3. 所属分类:其它

    • 发布日期:2021-02-22
    • 文件大小:11534336
    • 提供者:weixin_38751014
  1. 基于灰度共生矩阵的多尺度分块压缩感知算法

  2. 针对图像边缘与轮廓不能精确重构的问题,提出了一种基于灰度共生矩阵的多尺度分块压缩感知算法。该算法利用三级离散小波变换将图像分解为高频部分和低频部分。通过灰度共生矩阵的熵分析高频部分图像块的纹理复杂度,并根据图像块纹理进行再分块、自适应分配采样率。采用平滑投影Landweber算法重构图像,消除分块引起的块效应。对多种图像进行压缩重构仿真,实验结果表明,无观测噪声情况、采样率为0.1时,本算法在Mandrill图像上得到的峰值信噪比(PSNR)为25.37 dB,比现有非均匀分块算法提高了2.51
  3. 所属分类:其它

    • 发布日期:2021-02-22
    • 文件大小:11534336
    • 提供者:weixin_38634323