您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 大样本的线性可分支持向量机算法

  2. 大样本的线性可分支持向量机算法,乔于,易正俊,支持向量机(Support Vector Machine,SVM)适合于解决高维小样本的分类问题。但在大数据背景下,支持向量机对于海量样本的学习算法收敛�
  3. 所属分类:其它

    • 发布日期:2020-03-12
    • 文件大小:450560
    • 提供者:weixin_38713996
  1. 使用超声波的智能手机手势识别.pdf

  2. 利用超声波技术,在智能手机上实现手势识别功能。非常实用的一篇论文徐曾春,吴凯娇,胡平:使用超声波的智能手机手势识别 ()挥手向前 ()挥手向后 ()挥手向左 ()挥手向右 图不同的手势时频图 特征均为先靠近发射源,然后远离发射源,但是细节方 面咯有不同。 实现细节 系统流程 获得反射的超声波数据集 图为系统流程图。首先,通过话筒获取 最初,系统先获得手势运动的时间序列片段,此时 段时间序列,经过快速傅里叶()变换将此序列从时片段已经经过处理,结果如图所示。出于本实验 域信号转换为频域信号。接着搜
  3. 所属分类:Android

    • 发布日期:2019-10-15
    • 文件大小:946176
    • 提供者:xiaokala_2011
  1. 机器学习算法基础学习总结

  2. 机器学习算法基础学习总结2.基本算法 2.1 Logistic回归 优点:计算代价不高,易于理解和实现。 缺点:容易欠拟合,分类精度可能不高 适用数据类型:数值型和标称型数据。 类别:分类算法。 试用场景:解决二分类问题。 简述: Logistic回归算法基于 Sigmoid函数,或者说 Sigmoid就是逻辑回归函数。 Sigmoid函数定义如下:1/(1-exp(-z))。函数值域范围(0,1)。可以用来做分 类器。 Sigmoid函数的函数曲线如下: 逻辑凹归模型分解如下:(1)首先将不同
  3. 所属分类:机器学习

    • 发布日期:2019-07-02
    • 文件大小:312320
    • 提供者:abacaba
  1. 哈工大模式识别SVM讲义

  2. 哈工大模式识别SVM讲义,哈工大模式识别研究生课程资源数针对a的最大化,同吋考虑(7)式的约束,得到原始问题的对儁优化问题: 对偶优化问题 max(a)=2a1-2∑2xx (8) 约束 ≥0,i=1 22 原始优化问题和对偶优化问题都是典型的线性不等式约朿条件下的二次优化问题,求解 两者中的任何一个都是等价的。但SVM算法一般求解的是对偶问题,因为它有如下两个特 l、对偶问题不直接优化权值矢量w,因此与样本的特征维数d无关,只与样本的数量 n有关。当样本的特征维数很高时,对偶问题更谷易求解 2
  3. 所属分类:讲义

    • 发布日期:2019-03-03
    • 文件大小:239616
    • 提供者:qq_27328663