在这项工作中,我们评估了深度学习模型的可移植性,以检测超出标准模型的信号。 为此,我们在三种不同的信号模型上训练了深度神经网络:通过改变风味的中性电流产生 t Z ,成对产生类似矢量的 T -夸克通过标准模型胶子聚变和在3个质量点(1、1.2和1.4 TeV)的重胶子衰变中发生夸克。 这些网络使用 t 进行了训练
本文实例讲述了Python通过TensorFLow进行线性模型训练原理与实现方法。分享给大家供大家参考,具体如下:
1、相关概念
例如要从一个线性分布的途中抽象出其y=kx+b的分布规律
特征是输入变量,即简单线性回归中的 x 变量。简单的机器学习项目可能会使用单个特征,而比较复杂的机器学习项目可能会使用数百万个特征。
标签是我们要预测的事物,即简单线性回归中的 y 变量。
样本是指具体的数据实例。有标签样本是指具有{特征,标签}的数据,用于训练模型,总结规律。无标签样本只具有特征的数据x,通
AI Conference in Beijing
最后机会:AI Conference 2019 北京站门票正在热销中,机不可失!
编者注:文中超链接如果不能访问可以点击“阅读原文”访问本文原页面;查看2019年6月18日至21日在北京举行的人工智能大会上的相关议题。
和许多人一样,我已经知道机器学习模型本身可能会带来安全风险。最近大量的博文和论文概述了这一内容广泛的主题,列举出了攻击方法和一些漏洞,开始提出了防御的解决方案,并为本文提供了必要的框架。本文的目标是在流行的、传统的预测建模系统