针对智能交通系统中车牌定位速度慢,信息识别准确度低的问题,提出了一种高性能的车牌定位及字符识别算法.进行车牌图像预处理,在彩色图像中搜索边缘密度快速突起的矩形域,在搜索后的矩形区域内采集相似走向的双边曲线,筛选出双边走向具有突出相似特征的区域,以此定位出包含字符的真实车牌区域,通过改进的神经网络模型进行多模板同位权值匹配,将待匹配模板逐层剔除,接着进行相似模板的异位权值匹配,准确识别出车牌图像里的字符信息.该算法抓住了车牌的矩形特征和字符具有的并行双边走向的重要特点,利用新型的同异位并行模板剔除