您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 抗住日均千亿级消息的实时计算引擎在贝壳的应用实践

  2. 贝壳找房目前有1000多人的产品技术团队。从实时数据应用角度,公司内主要应用的实时数据,一个是线上的日志,大概有两千多个线上的服务,每个服务又输出了很多的日志,日志数据是流式数据应用最多的。第二部分就是埋点,在APP、web端上报的经纪人作业情况和C端用户的行为,这部分通过前端的埋点技术上报。第三部分就是业务的数据,业务用kafka做消息队列产生的实时数据。1、流式计算平台平台目前主要建设SparkStreaming、Flink两种在实时计算中比较常见的计算引擎。平台化的背景就是早期如果公司内有
  3. 所属分类:其它

    • 发布日期:2021-03-01
    • 文件大小:1048576
    • 提供者:weixin_38565628
  1. 实时计算在贝壳的实践

  2. 下图为贝壳找房的业务场景示意图。最上层为贝壳找房公司最为主体的四大业务:二手房交易、新房交易、租赁业务及装修业务。四大业务运营将产生图示中间部分的四大数据即楼盘字典、交易数据、用户行为日志与后端服务日志。图示最下部分代表公司实时数据采集、实时数据计算的业务模块,本文中的案例将重点介绍数据实时计算部分的设计、实现及应用内容。在2018年初,随着公司埋点治理规范的推进,我们建设了DP实时数据总线,统一承接各种埋点数据流的标准化处理,并对外提供清洗后的实时数据。随着维护的实时任务增加,面临着实时数据流
  3. 所属分类:其它

    • 发布日期:2021-02-24
    • 文件大小:5242880
    • 提供者:weixin_38667835
  1. 实时计算在贝壳的实践

  2. 下图为贝壳找房的业务场景示意图。最上层为贝壳找房公司最为主体的四大业务:二手房交易、新房交易、租赁业务及装修业务。四大业务运营将产生图示中间部分的四大数据即楼盘字典、交易数据、用户行为日志与后端服务日志。图示最下部分代表公司实时数据采集、实时数据计算的业务模块,本文中的案例将重点介绍数据实时计算部分的设计、实现及应用内容。在2018年初,随着公司埋点治理规范的推进,我们建设了DP实时数据总线,统一承接各种埋点数据流的标准化处理,并对外提供清洗后的实时数据。随着维护的实时任务增加,面临着实时数据流
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:5242880
    • 提供者:weixin_38625184
  1. 抗住日均千亿级消息的实时计算引擎在贝壳的应用实践

  2. 贝壳找房目前有1000多人的产品技术团队。从实时数据应用角度,公司内主要应用的实时数据,一个是线上的日志,大概有两千多个线上的服务,每个服务又输出了很多的日志,日志数据是流式数据应用最多的。第二部分就是埋点,在APP、web端上报的经纪人作业情况和C端用户的行为,这部分通过前端的埋点技术上报。第三部分就是业务的数据,业务用kafka做消息队列产生的实时数据。1、流式计算平台平台目前主要建设SparkStreaming、Flink两种在实时计算中比较常见的计算引擎。平台化的背景就是早期如果公司内有
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:1048576
    • 提供者:weixin_38737980