针对煤矿瓦斯数据普遍含有噪声的问题,提出一种基于遗传算法优化的最小二乘支持向量回归机(GA-LSSVR)的数据去噪算法。LSSVR通过求解只含一个等式约束的二次规划问题来求得最优解,从而改进了小波去噪局部最优的缺点。但LSSVR也存在收敛速度慢的缺点,通过遗传算法(GA)优化LSSVR,以提高算法的收敛速度。首先,对某煤矿的瓦斯浓度时间序列进行异常数据和缺失数据的处理,然后用GA-LSSVR建模训练。仿真实验结果表明,与小波去噪方法相比,GA-LSSVR能有效去除噪声,并且能够避免数据失真,把有