您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 密度敏感的谱聚类算法研究

  2. 人工智能、数据挖掘等相关的聚类分析技术介绍,主要是针对流形结构数据的聚类问题
  3. 所属分类:专业指导

    • 发布日期:2011-03-19
    • 文件大小:545792
    • 提供者:littleninja
  1. 数字通信信号的自动识别与参数估计研究

  2. 本文在前人工作的基础上,结合具体工程实践,主要研究了数字通信信号调制 样式的自动识别与参数估计技术。所做的工作主要包括: 1、提出了利用小波变换结合谱分析技术估计数字通信信号码速率的方法;提出 了采用总体概率分布估计与支持矢量机分类器相结合对多进制数字基带信号自动分 类的方法。证明了小波变换系数模值构成的单极性基带序列的功率谱在其码速率整数 倍处存在离散谱线,检测这些离散谱线可实现数字基带序列码速率的盲估计。这种方 法实现简单且有较好的估计精度。指出了不同类型的数字基带信号对应不同的总体概 率
  3. 所属分类:专业指导

    • 发布日期:2012-01-06
    • 文件大小:8388608
    • 提供者:guangyu99
  1. 2017年最新机器学习入门与实战精品高清全套视频教程附讲义作业(anaconda2 4.3Pytyhon2.7 jupyter) 70课

  2. 2017年最新机器学习入门与实战精品高清全套视频教程附讲义作业(anaconda2 4.3Pytyhon2.7 jupyter) 70课 课程介绍: 从基本的软件安装到必备的Python扩展讲起,然后对机器学习算法一一讲解,同时配合编程实操的实现过程,适合零基础系统学习,配套资料包括讲义作业软件数据都有。 课程目录: 第一章Numpy前导介绍 1.1、Anconda安装 1.2、JupyterNoteBook 1.3、Numpy介绍+ndarry 1.4、ndarry的shape属性巧算 1.
  3. 所属分类:机器学习

    • 发布日期:2018-05-04
    • 文件大小:2048
    • 提供者:happyzhangdi008
  1. 无监督学习方法以及应用

  2. 无监督学习是机器学习的一个重要分支,其在机器学习、数据挖掘、生物医学大数据分析、数据科学等领域有着重要地位。本书阐述作者近年在无监督学习领域所取得的主要研究成果,包括次胜者受罚竞争学习算法、K-means学习算法、K-medoids学习算法、密度学习算法、谱图聚类算法;*后介绍了无监督学习在基因选择、疾病诊断中的应用。
  3. 所属分类:机器学习

    • 发布日期:2018-06-03
    • 文件大小:90177536
    • 提供者:qq_33268231
  1. 无监督学习方法以及应用 谢娟英

  2. 无监督学习是机器学习的一个重要分支,其在机器学习、数据挖掘、生物医学大数据分析、数据科学等领域有着重要地位。本书阐述作者近年在无监督学习领域所取得的主要研究成果,包括次胜者受罚竞争学习算法、K-means学习算法、K-medoids学习算法、密度学习算法、谱图聚类算法;*后介绍了无监督学习在基因选择、疾病诊断中的应用。
  3. 所属分类:机器学习

    • 发布日期:2018-06-02
    • 文件大小:90177536
    • 提供者:qq_33268231
  1. 模式识别作业.docx

  2. 混合高斯密度函数估计。K-Means聚类算法。谱聚类算法(经典算法、Shi算法和Ng算法)。影响聚类性能的因素。证明:对于平方误差和准则,第三种划分最好;若采用类内散度矩阵的行列式最小准则,则前两种划分较好。
  3. 所属分类:互联网

    • 发布日期:2020-03-27
    • 文件大小:275456
    • 提供者:qq_36918538
  1. 机器学习-15. Keras深度学习框架

  2. 人工智能基础视频教程零基础入门课程 第十四章 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 Tenso
  3. 所属分类:机器学习

    • 发布日期:2020-07-16
    • 文件大小:701497344
    • 提供者:suolong123
  1. 机器学习-14. 卷积神经网络深入、AlexNet模型

  2. 人工智能基础视频教程零基础入门课程 第十四章 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 Tenso
  3. 所属分类:机器学习

    • 发布日期:2020-07-16
    • 文件大小:708837376
    • 提供者:suolong123
  1. 机器学习-13. 卷积神经网络、CNN识别图片(下)

  2. 人工智能基础视频教程零基础入门课程 第十三章(下) 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 Te
  3. 所属分类:机器学习

    • 发布日期:2020-07-16
    • 文件大小:1002438656
    • 提供者:suolong123
  1. 机器学习-13. 卷积神经网络、CNN识别图片(上)

  2. 人工智能基础视频教程零基础入门课程 第十三章(上) 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 Te
  3. 所属分类:机器学习

    • 发布日期:2020-07-16
    • 文件大小:832569344
    • 提供者:suolong123
  1. 机器学习-12. TensorBoard可视化

  2. 人工智能基础视频教程零基础入门课程 第十二章 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 Tenso
  3. 所属分类:机器学习

    • 发布日期:2020-07-16
    • 文件大小:368050176
    • 提供者:suolong123
  1. 机器学习-10. TensorFlow深入、TensorBoard

  2. 人工智能基础视频教程零基础入门课程 第十章 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 Tensor
  3. 所属分类:机器学习

    • 发布日期:2020-07-16
    • 文件大小:588251136
    • 提供者:suolong123
  1. 机器学习-09. 深度学习、TensorFlow安装和实现

  2. 人工智能基础视频教程零基础入门课程 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 TensorFlow
  3. 所属分类:机器学习

    • 发布日期:2020-07-16
    • 文件大小:747634688
    • 提供者:suolong123
  1. 机器学习-08. 密度聚类、谱聚类

  2. 人工智能基础视频教程零基础入门课程 第八章 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 Tensor
  3. 所属分类:机器学习

    • 发布日期:2020-07-16
    • 文件大小:444596224
    • 提供者:suolong123
  1. 机器学习-07. 分类评估、聚类(下)

  2. 人工智能基础视频教程零基础入门课程 第七章(下) 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 Ten
  3. 所属分类:机器学习

    • 发布日期:2020-07-16
    • 文件大小:383778816
    • 提供者:suolong123
  1. 机器学习-07. 分类评估、聚类(上)

  2. 人工智能基础视频教程零基础入门课程 第七章(上) 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 Ten
  3. 所属分类:机器学习

    • 发布日期:2020-07-16
    • 文件大小:797966336
    • 提供者:suolong123
  1. 机器学习-06. 多分类、决策树分类、随机森林分类(下)

  2. 人工智能基础视频教程零基础入门课程 第六章(下) 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 Ten
  3. 所属分类:机器学习

    • 发布日期:2020-07-16
    • 文件大小:705691648
    • 提供者:suolong123
  1. 机器学习-06. 多分类、决策树分类、随机森林分类(上)

  2. 人工智能基础视频教程零基础入门课程 第六章(上) 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 Ten
  3. 所属分类:机器学习

    • 发布日期:2020-07-16
    • 文件大小:499122176
    • 提供者:suolong123
  1. 基于Laplace矩阵Jordan型的复杂网络聚类算法

  2. 在目前复杂网络聚类算法中,基于Laplace特征值的谱聚类方法具有严密的数学理论和较高的精度,但受限于该方法对簇结构数量、规模等先验知识的依赖,难以实际应用。针对这一问题,基于Laplace矩阵的Jordan型变换,提出了一种先验知识的自动获取方法,实现了基于Jordan矩阵特征向量的初始划分。基于Jordan型特征值定义了簇结构的模块化密度函数,并使用该函数和初始划分结果完成了高精度聚类算法。该算法在多个数据集中的实验结果表明,与目前主流的Fast-Newman算法、Girvan-Newman
  3. 所属分类:其它

    • 发布日期:2021-02-09
    • 文件大小:1048576
    • 提供者:weixin_38677244
  1. 基于Laplace矩阵Jordan型的复杂网络聚类算法

  2. 在目前复杂网络聚类算法中,基于 Laplace 特征值的谱聚类方法具有严密的数学理论和较高的精度,但受限于该方法对簇结构数量、规模等先验知识的依赖,难以实际应用。针对这一问题,基于Laplace矩阵的Jordan型变换,提出了一种先验知识的自动获取方法,实现了基于Jordan矩阵特征向量的初始划分。基于Jordan型特征值定义了簇结构的模块化密度函数,并使用该函数和初始划分结果完成了高精度聚类算法。该算法在多个数据集中的实验结果表明,与目前主流的Fast-Newman算法、Girvan-Newm
  3. 所属分类:其它

    • 发布日期:2021-01-15
    • 文件大小:1048576
    • 提供者:weixin_38502693
« 12 »