目前,深度学习成为计算机领域研究与应用最广泛的技术之一,在图像识别、语音、自动驾驶、文本翻译等方面都取得良好的应用成果。但人们逐渐发现深度神经网络容易受到微小扰动图片的影响,导致分类出现错误,这类攻击手段被称为对抗样本。对抗样本的出现可能会给安全敏感的应用领域带来灾难性的后果。现有的防御手段大多需要对抗样本本身作为训练集,这种对抗样本相关的防御手段是无法应对未知对抗样本攻击的。借鉴传统软件安全中的边界检查思想,提出了一种基于边界值不变量的对抗样本检测防御方法,该方法通过拟合分布来寻找深度神经网络