您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. pandas常用操作.pdf

  2. pandas库的常用操作,参考书籍《Pandas Cookbook》,内容干货,推荐下载!movie get_dtype_counts# output the number of columns with each specific data type: movie. select_dtypes(include['int ]).head(# select only integer columns movie. filter(1ike=' facebook').head()#1ike参数表示包含此
  3. 所属分类:Python

    • 发布日期:2019-08-31
    • 文件大小:701440
    • 提供者:justisme
  1. 菊安酱的机器学习第1期-k-近邻算法(直播).pdf

  2. k-近邻算法的课件。来自于菊安酱的机器学习实战12期的免费教程。内涵python源码。菊安酱的直播间: 我们已经知道k近邻算法的工作原理,根据特征比较,然后提取样本集中特征最相似数据(最近邻)的分类标签。 那么如何进行比较呢?比如表1中新出的电影,我们该如何判断他所属的电影类别呢?如图2所示。 电影分类 120 爱情片(1,101) 爱情片(12,97) 80 爱情片(5,89) 水弊 60 ?(24,67) 动作片(112,9 20 动作片(1158) 动作片(108,5) 0 20 60 8
  3. 所属分类:讲义

    • 发布日期:2019-07-27
    • 文件大小:867328
    • 提供者:qiu1440528444
  1. 详解pandas中iloc, loc和ix的区别和联系

  2. 主要介绍了详解pandas中iloc, loc和ix的区别和联系,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
  3. 所属分类:其它

    • 发布日期:2020-09-17
    • 文件大小:57344
    • 提供者:weixin_38620314
  1. 浅谈pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)

  2. 下面小编就为大家分享一篇浅谈pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:60416
    • 提供者:weixin_38743968
  1. 详谈Pandas中iloc和loc以及ix的区别

  2. 今天小编就为大家分享一篇详谈Pandas中iloc和loc以及ix的区别,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:38912
    • 提供者:weixin_38668243
  1. 对pandas中iloc,loc取数据差别及按条件取值的方法详解

  2. 今天小编就为大家分享一篇对pandas中iloc,loc取数据差别及按条件取值的方法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-19
    • 文件大小:32768
    • 提供者:weixin_38681218
  1. 对pandas中iloc,loc取数据差别及按条件取值的方法详解

  2. Dataframe使用loc取某几行几列的数据: print(df.loc[0:4,['item_price_level','item_sales_level','item_collected_level','item_pv_level']]) 结果如下,取了index为0到4的五行四列数据。 item_price_level item_sales_level item_collected_level item_pv_level 0 3 3 4 14 1
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:34816
    • 提供者:weixin_38695061
  1. 对python dataframe逻辑取值的方法详解

  2. 我遇到的一个小需求,就是希望通过判断pandas dataframe中一列的值在两个条件范围(比如下面代码中所描述的逻辑,取小于u-3ε和大于u+3ε的值),然后取出dataframe中的所有符合条件的值,这个需求的解决与普通的iloc、loc、ix的方式不同,所以我想分享一下,希望可以帮到遇到这个困难的朋友们,下面是我的实例代码: doc[~((doc.iloc[:,141:142](mean_value+3*std_value)))] 下面代码是去掉两端数据,保留中间数据 doc = d
  3. 所属分类:其它

    • 发布日期:2020-12-26
    • 文件大小:37888
    • 提供者:weixin_38568548
  1. 对Python中DataFrame选择某列值为XX的行实例详解

  2. 如下所示: #-*-coding:utf8-*- import pandas as pd all_data=pd.read_csv(E:/协和问答系统/SenLiu/熵测试数据.csv) #获取某一列值为xx的行的候选列数据 print(all_data) feature_data=all_data.iloc[:,[0,-1]][all_data[all_data.T.index[0]]=='青年'] print(feature_data) 实验结果如下: C:\Program Files
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:38912
    • 提供者:weixin_38665668
  1. 浅谈pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)

  2. pandas为我们提供了多种切片方法,而要是不太了解这些方法,就会经常容易混淆。下面举例对这些切片方法进行说明。 数据介绍 先随机生成一组数据: In [5]: rnd_1 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_2 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_3 = [random.randrange(1,20) for x in xra
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:62464
    • 提供者:weixin_38708105
  1. python pandas.DataFrame选取、修改数据最好用.loc,.iloc,.ix实现

  2. 相信很多人像我一样在学习python,pandas过程中对数据的选取和修改有很大的困惑(也许是深受Matlab)的影响。。。 到今天终于完全搞清楚了!!! 先手工生出一个数据框吧 import numpy as np import pandas as pd df = pd.DataFrame(np.arange(0,60,2).reshape(10,3),columns=list('abc')) df 是这样子滴 那么这三种选取数据的方式该怎么选择呢? 一、当每列已有column name时
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:50176
    • 提供者:weixin_38566318
  1. 基于DATAFRAME中元素的读取与修改方法

  2. DATAFRAME中使用iat[1,0]和iloc[0,1]对元素进行修改。 a = [(hahaha,1),(lalala,2),(cacaca,6)] b = padas.DataFrame(a) b.iat[1,0] = 1.0 将位置横竖坐标为1,0的元素改为值为1.0。 以上这篇基于DATAFRAME中元素的读取与修改方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持软件开发网。 您可能感兴趣的文章:pyth
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:29696
    • 提供者:weixin_38647517