Jiang,Komatsu和Vescovi最近开发了一种新的相关函数计算方法,其中涉及两个行列式运算符和一个不受保护的单迹线运算符。 该相关函数提供了巨大引力子对闭合弦的吸收的全息描述。 该分析在组表示理论的框架内具有自然的解释,该理论允许对通用Schur多项式和受限Schur多项式进行泛化。 这将全息描述推广到任何在球体上承载多个角动量的巨型或双巨型引子。 对于用N个框(与最大重引力对偶)的列标记的受限Schur多项式,我们发现有利于可积性的证据。 由于此受限Schur多项式是1 2 $$ \