点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 干货分享|详解特征工程与推荐系统及其实践
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
干货分享|详解特征工程与推荐系统及其实践
本文来自于网络,本文主要介绍了特征工程,以及一些常见的特征工程的方法,以及自然语言处理的特征工程,希望对您的学习有所帮助。协同过滤CollaborativeFiltering特征工程FeatureEngineering推荐系统实战注意点首先我们看一下机器学习的五大环节。一是特征工程。第二是算法定义和调参,就是你该选择什么样的算法,用什么样的参数进行调节。第三是数据采集和清洗,接下来是实现这个算法并进行优化。‘I’代表和业务生产系统集成,所以我们就会简称为FaDAI这五大步骤。特征工程是这五大环节
所属分类:
其它
发布日期:2021-02-24
文件大小:575488
提供者:
weixin_38677244
干货分享|详解特征工程与推荐系统及其实践
本文来自于网络,本文主要介绍了特征工程,以及一些常见的特征工程的方法,以及自然语言处理的特征工程,希望对您的学习有所帮助。协同过滤CollaborativeFiltering特征工程FeatureEngineering推荐系统实战注意点 首先我们看一下机器学习的五大环节。一是特征工程。第二是算法定义和调参,就是你该选择什么样的算法,用什么样的参数进行调节。第三是数据采集和清洗,接下来是实现这个算法并进行优化。‘I’代表和业务生产系统集成,所以我们就会简称为FaDAI这五大步骤。特征工程是这五大环
所属分类:
其它
发布日期:2021-01-27
文件大小:575488
提供者:
weixin_38555350