现有瓦斯浓度预测方法只能实现瓦斯浓度的静态预测,不能随着瓦斯数据的累积而及时更新,从而导致预测结果不具有及时性。针对该问题,提出了一种基于时间序列的瓦斯浓度动态预测方法。利用小波分解技术的多分辨率特性,将瓦斯浓度时间序列分解到不同尺度上,使时间序列平稳化;通过实时动态构建的自回归滑动平均(ARMA)模型,利用过去瓦斯浓度变化趋势预测未来一段时间的矿井瓦斯浓度值,得到时间序列预测结果;为提高瓦斯浓度预测精度,将ARMA模型的预测结果与矿井环境参数输入到训练好的BP神经网络模型中,通过BP神经网络模