由于基于l1范数的压缩感知理论模型无法充分挖掘信号的稀疏性,因此在重建过程中无法实现对待重构系数的等权值约束,进而导致在信噪比较低时,噪声分布的不稀疏性会严重影响目标信息的重建,造成成像结果中会出现大量虚假目标,成像性能急剧下降。本文在深入分析了加权l1范数模型的基础上,提出了一种更加稳健的适用于含噪模式下的高分辨率压缩感知微波成像模型。该模型在借鉴常规加权l1范数模型的基础上,针对权重选择及加权方式进行了修正,使得权值的变化程度和权值大小分离,可以做到相同的惩罚约束,从而实现成像过程中噪声分量