随着神经科学研究和实践的发展,具有多种模式和高密度的神经数据分析近来已成为一种趋势。 迫切需要一种在不损失或破坏空间,时间和频率的模式之间(通常是交互作用)的情况下准确,唯一地捕获特征的方法。 此外,该方法必须能够在数十个甚至数百个通道中快速分析规模和大小呈指数增长的神经数据,以便可以及时做出结论和决策。 并行数据分析(PARAFAC)是多向数据分析的重要方法,它在脑电图(EEG)分解中表现出了有效性。 但是,传统的PARAFAC由于具有很高的复杂度而仅适用于脱机数据分析,随着数据量的增加,其计