您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 数学建模方法:蚁群算法

  2. 标题——作者——出处 基于蚁群优化算法递归神经网络的短期负荷预测 蚁群算法的小改进 基于蚁群算法的无人机任务规划 多态蚁群算法 MCM基板互连测试的单探针路径优化研究 改进的增强型蚁群算法 基于云模型理论的蚁群算法改进研究 基于禁忌搜索与蚁群最优结合算法的配电网规划 自适应蚁群算法在序列比对中的应用 基于蚁群算法的QoS多播路由优化算法 多目标优化问题的蚁群算法研究 多线程蚁群算法及其在最短路问题上的应用研究 改进的蚁群算法在2D HP模型中的应用 制造系统通用作业计划与蚁群算法优化 基于混合
  3. 所属分类:其它

    • 发布日期:2010-05-21
    • 文件大小:25165824
    • 提供者:wu_wenyang
  1. 蚁群算法详细资料

  2. 包括: 基于蚁群优化算法递归神经网络的短期负荷预测 蚁群算法的小改进 基于蚁群算法的无人机任务规划 多态蚁群算法 MCM基板互连测试的单探针路径优化研究 改进的增强型蚁群算法 基于云模型理论的蚁群算法改进研究 基于禁忌搜索与蚁群最优结合算法的配电网规划 自适应蚁群算法在序列比对中的应用 基于蚁群算法的QoS多播路由优化算法 多目标优化问题的蚁群算法研究 多线程蚁群算法及其在最短路问题上的应用研究 改进的蚁群算法在2D HP模型中的应用 制造系统通用作业计划与蚁群算法优化 基于混合行为蚁群算法的
  3. 所属分类:专业指导

    • 发布日期:2014-04-25
    • 文件大小:25165824
    • 提供者:kolchakzy
  1. 基于GA PSO混合算法的钢杆磁特性参数识别方法.pdf

  2. 基于GA PSO混合算法的钢杆磁特性参数识别方法.pdf,测量轴类零件的磁滞回线,利用其特征参数的变化表征零件表面硬度及硬化层深度,是具有工程应用前景的电磁无损检测新技术之一,其关键是轴类零件磁特性曲线测量装置的研制和磁特性参数高精度识别方法的研究。设计出一种基于闭环磁路的钢杆磁滞回线测量实验装置,并基于J A磁滞模型,提出了一种遗传粒子群(GA PSO)混合算法,实现了钢杆磁滞回线全局与局部特征参数的快速、高精度识别。实验测得的3种不同材质钢杆磁滞回线,对比分析了混合优化算法与单一算法(遗传
  3. 所属分类:其它

    • 发布日期:2019-09-20
    • 文件大小:2097152
    • 提供者:weixin_38744375
  1. 快速混合粒子群优化算法应用研究

  2. 文中针对把最小化总流动时间作为基准(Fm|fmls,Splk,prmu|∑Cj)的流水车间序列依赖组调度问题(FSDGS),研究了一种新的粒子群优化算法(PSO)。并基于排序值(Ranked Order Value,ROV)开发了一种编码方案,这种方案能将PSO算法中粒子的连续位置值转化成作业和组排列。文中用了一种称为个体增益(IE)的邻域矩阵搜索策略来保证提高搜索的质量并在深度和广度上做出平衡。新算法的性能被拿来与当前文献中提到的已知最好的元启发式算法即蚁群算法(ACO)进行对比,基于常用测试
  3. 所属分类:其它

    • 发布日期:2021-01-29
    • 文件大小:1048576
    • 提供者:weixin_38596093