传统单一线性或非线性滤波方法往往难以获得最优线性/非线性混合动态系统状态估计,针对这一问题,结合卡尔曼滤波(KF)方法可获得线性状态估计最优解、计算量小等优势,提出了一种基于KF和扩展容积卡尔曼滤波(A-CKF)的组合滤波方法。该方法将系统状态分解为线性状态与非线性状态两部分,分别采用KF和简化两次扩展容积卡尔曼滤波(STA-CKF)方法进行系统状态估计。机动目标跟踪和捷联惯性导航系统非线性对准仿真结果表明,相比于Rao-Blackwellized粒子滤波方法,新方法在保证滤波精度的前提下,使得