点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 扩展的全尺寸高斯混合模型的缺失数据分类:在基于EMG的运动识别中的应用
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
扩展的全尺寸高斯混合模型的缺失数据分类:在基于EMG的运动识别中的应用
数据丢失是模式识别技术在解决现实生活中的分类任务时需要处理的一个常见缺陷。 本文首先讨论了使用高斯混合模型(GMM)处理缺失值的高维样本时遇到的问题。 由于由于收敛性和稳定性问题,直接使用高维样本作为输入来拟合GMM非常困难,因此提出了一种通过将降维GMM扩展到全维空间来构建高维GMM的新方法。 在扩展的全维GMM的基础上,提出了边际化和条件均值插补两种方法,对在线阶段数据缺失的样本进行分类。 然后,采用提出的方法从表面肌电信号(sEMG)识别手部动作,即使缺少50%的sEMG信号,也可以获得超
所属分类:
其它
发布日期:2021-03-03
文件大小:1048576
提供者:
weixin_38713167