您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于遗传算法改进的BP神经网络模型在邻近层瓦斯涌出量预测中的应用

  2. 邻近层瓦斯向回采工作面运移是造成工作面瓦斯浓度超限的原因之一。运用遗传算法和BP神经网络的基本理论,选取了影响邻近层瓦斯涌出9个基本指标,建立邻近层瓦斯涌出的预测模型,并通过现场实测数据对邻近层瓦斯涌出量进行了预测。预测结果表明:该模型预测获得的精度较高,预测模型可靠。
  3. 所属分类:其它

    • 发布日期:2020-05-10
    • 文件大小:175104
    • 提供者:weixin_38746293
  1. 耦合神经网络在瓦斯涌出量动态预测中的应用

  2. 为了更有效、准确地对煤矿瓦斯涌出量进行预测,保障煤矿生产安全,提出了一种基于改进果蝇算法(MFOA)优化Elman神经网络(ENN)的智能动态预测方法.首先,利用主成分分析法(PCA)对煤矿瓦斯涌出量监测数据进行降维处理;其次,引入果蝇算法以改进的自适应搜索步长进行搜索,以此实现对ENN网络参数的全局寻优,从而建立基于MFOA-ENN的煤矿瓦斯涌出量动态预测模型,并对预测效果进行了验证.实验结果表明:MFOA-ENN模型的平均相对变动值为0.003 7、均方根误差为0.102 6、平均相对误差为
  3. 所属分类:其它

    • 发布日期:2020-04-29
    • 文件大小:975872
    • 提供者:weixin_38623707
  1. 改进的神经网络在瓦斯涌出量预测中的应用

  2. 以解决矿井瓦斯涌出量预测问题为研究目的,将模糊系统和人工神经网络有机结合起来,组成T-S模糊神经网络,利用遗传算法对网络中参数值进行优化,对淮南某煤矿进行试验并分析。结果表明预测模型正确可靠。
  3. 所属分类:其它

    • 发布日期:2020-07-06
    • 文件大小:517120
    • 提供者:weixin_38560039