您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 通信与网络中的改进PSO算法在LSSVM入侵检测模型的应用

  2. 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究。PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控
  3. 所属分类:其它

    • 发布日期:2020-10-22
    • 文件大小:330752
    • 提供者:weixin_38643127
  1. 改进的粒子群算法在入侵检测中的应用

  2. 为了提高入侵检测系统的检测率和降低系统的误检率,对基本的粒子群算法采用在粒子群初始化阶段,种群的离散度必须满足一定的要求才能开始迭代;在算法迭代过程中,惯性权重、加速系数的调整都与当前粒子群的离散度相关;当种群的离散度小于一定数值时,进行保优重初始化,同时采用适应度函数拉伸操作,重新迭代等几个方面的改进。经过KDD Cup 1999数据集的训练和检验数据的仿真测试,改进后的粒子群算法具有较高的检测正确率和较低的误检率,而且新算法收敛速度快,不易局部最优。
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:1016832
    • 提供者:weixin_38606294
  1. 改进PSO算法在LSSVM入侵检测模型的应用

  2. 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究。PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随的粒子进行搜索。同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其
  3. 所属分类:其它

    • 发布日期:2021-01-19
    • 文件大小:343040
    • 提供者:weixin_38752074