提出改进非劣分类遗传算法(NSGA-Ⅱ)在燃煤锅炉多目标燃烧优化中的应用,优化的目标是锅炉热损失及NOx排放最小化。首先,采用BP神经网络模型分别建立了300MW燃煤锅炉的NOx排放特性模型和锅炉热损失模型,同时利用锅炉热态实验数据对模型进行了训练和验证,结果表明,BP神经网络模型可以很好地预测锅炉的排放特性和锅炉的热损失特性。在建立的锅炉排放特性和热损失BP神经网络模型基础上,采用非劣分类遗传算法对锅炉进行多目标优化,针对NSGA-Ⅱ在燃煤锅炉燃烧多目标优化问题应用中Pareto解集分布不理想