(10分)
MNIST手写数字识别问题的多层神经网络模型实践
按课程案例,动手完成编码实践。
自行设计一种神经网络模型,并尝试采用不同超参数,让模型的准确率达到97.5%。
提交要求:
1、你认为最优的一次带运行结果的源代码文件(.ipynb 格式)
2、作为附件上传
评分标准:
1、完成MNIST手写数字识别的神经网络建模与应用,有完整的代码,模型能运行,准确率达97%以上;得6分;每下降一个百分点,少得1分;
2、准确率达97.3%以上;再得2分,否则再得0分;
3、准确率到97.5%以上;