点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 数据融合在车牌字符识别中的应用
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
VC++数字图像模式识别技术及工程实践
目录 第1章 绪论 1.1 模式和模式识别的概念 1.2 模式空间、特征空间和类型空间 1.3 模式识别系统的构成 1.3.1 信息获取 1.3.2 预处理 1.3.3 特征提取和选择 1.3.4 分类决策 1.4 物体的结构表示 1.5 图片识别问题 第2章 模式识别中的基本决策方法 2.1 基于最小错误率的贝叶斯决策 2.2 分类器设计 2.2.1 多类情况 2.2.2 两类情况 2.3 关于分类器的错误率 2.4 关于贝叶斯决策 2.5 线性判别函数的基本概念 2.6 设计线性分类器的主
所属分类:
C++
发布日期:2013-05-16
文件大小:14680064
提供者:
a121649982
Visual C++数字图像模式识别技术及工程实践工程源代码
第1章 绪论 1.1 模式和模式识别的概念 1.2 模式空间、特征空间和类型空间 1.3 模式识别系统的构成 1.3.1 信息获取 1.3.2 预处理 1.3.3 特征提取和选择 1.3.4 分类决策 1.4 物体的结构表示 1.5 图片识别问题 第2章 模式识别中的基本决策方法 2.1 基于最小错误率的贝叶斯决策 2.2 分类器设计 2.2.1 多类情况 2.2.2 两类情况 2.3 关于分类器的错误率 2.4 关于贝叶斯决策 2.5 线性判别函数的基本概念 2.6 设计线性分类器的主要步骤
所属分类:
C++
发布日期:2013-05-17
文件大小:14680064
提供者:
a121649982
数据融合在车牌字符识别中的应用
将D-S证据理论引入车牌字符识别,结合神经网络容错能力强、能够自适应学习等优点,对待识别字符进行统计和结构等多方面的特征提取后,分别经过神经网络分类器得到相应的结果,并应用D-S证据理论对各种结果进行数据融合,从而实现了字符各方面特征的优势互补,进一步提高了字符识别的成功率。
所属分类:
其它
发布日期:2020-10-18
文件大小:418816
提供者:
weixin_38572960
数据融合技术在车牌字符识别中的应用研究
摘要: 在车牌字符识别中,针对单一识别方法识别率不高的问题,提出了应用数据融合技术,将不同的识别方法有机地结合起来构成融合型识别系统,有效地、综合地提高整个系统的识别性能。数据层选择了加权平均算法,特征层选择了人工神经网络算法,决策层采用了模糊推理算法实现对车牌字符的最终识别。应用MATLAB 进行了仿真,并与单独使用BP 神经网络算法的识别率进行了比较,结果证明采用数据融合技术系统的识别率得到了较大提高,达到90%以上。 车牌识别系统是图像模式识别领域的一个经典研究课题。对车牌识别技术的
所属分类:
其它
发布日期:2020-11-04
文件大小:214016
提供者:
weixin_38646645