点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 无标签分类:从高能物理中的混合样品中学习
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
无标签分类:从高能物理中的混合样品中学习
现代机器学习技术可用于构建强大的对撞机物理问题的模型。 但是,在许多应用中,由于数据中缺少真实级别的信息,因此在不完善的仿真上对这些模型进行了训练,这冒着仿真学习模型风险的风险。 在本文中,我们介绍了无标签分类的范式(CWoLa),其中训练了分类器以区分类的统计混合,这在对撞机物理学中很常见。 至关重要的是,既不需要单个标签也不需要类别比例,但是我们证明了CWoLa范例中的最佳分类器也是在传统的完全监督情况下所有标签信息均可用的最佳分类器。 在一个分析性玩具示例中证明了这种方法的强大功能之后,我
所属分类:
其它
发布日期:2020-03-27
文件大小:535552
提供者:
weixin_38735119