提出一种基于差分进化(DE) 和粒子群优化(PSO) 的混合智能方法—–DEPSO 算法, 并通过对10 个典型函数进行测试, 表明DEPSO 算法具有良好的寻优性能. 针对单隐层前向神经网络(SLFNs) 提出一种改进的学习算法-----DEPSO-ELM 算法, 即应用DEPSO 算法优化SLFNs 的隐层节点参数, 采用极限学习算法(ELM) 求取SLFNs 的输出权值. 将DEPSO-ELM 算法应用于6 个典型真实数据集的回归计算, 并与DE-ELM、SaE-ELM 算法相比, 获得了