最小权顶点覆盖问题 给定一个赋权无向图 G=(V,E),每个顶点 v V ∈ 都有一个权值 w(v)。如果 U 包含于 V, 且对于 , 且对于(u,v) E ∈ 有 u U ∈ 且 v V ∈ -U,则有 v K. ∈ 如:U = {1}, 若有边(1,2) , 则有 2 属 于 属 于 K. 若有集合 U 包含于 V 使得 U + K = V, 就称 U 为图 G 的一个顶点覆盖。 G 的最小权 顶点覆盖是指 的最小权 顶点覆盖是指 G 中所含顶点权之和最小的顶点覆盖。
项目设计:最小权顶点覆盖问题 给定一个赋权无向图 G=(V,E),每个顶点 v V ∈ 都有一个权值 w(v)。如果 U 包含于 V, 且对于 , 且对于(u,v) E ∈ 有 u U ∈ 且 v V ∈ -U,则有 v K. ∈ 如:U = {1}, 若有边(1,2) , 则有 2 属 于 属 于 K. 若有集合 U 包含于 V 使得 U + K = V, 就称 U 为图 G 的一个顶点覆盖。 G 的最小权 顶点覆盖是指 的最小权 顶点覆盖是指 G 中所含顶点权之和最小的顶点覆盖
最大团问题的测试数据。 按照不同的数据规模整理,每一组测试数据都是精心构造的,对验证算法的有效性非常有帮助。 每一个文件就是一组输入,以邻接表的形式输入一个图。格式如下: 第一行: p edge 顶点数 边数 以下每一行: e 顶点号 顶点号 说明: p edge , e 是固有的,顶点号从 1 开始。例如: p edge 4 3 e 1 2 e 2 3 e 3 4 文件的标题就是这个图的答案,即最大团的顶点数。