您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 朴素贝叶斯py源代码

  2. 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法 [1] 。 最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier 或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但
  3. 所属分类:互联网

    • 发布日期:2020-05-22
    • 文件大小:1024
    • 提供者:qq_41061352
  1. Machine-Learning-in-Action:本书取自《机器学习在行动》中的源代码,更正了错误,并根据python 3.X更新了-Source code learning

  2. 行动中的机器学习 本书摘自《机器学习在行动》中的源代码。 ipynb格式和html格式,更正了(以及我自己发现的一些错误),并根据python 3.X更新了。 机器学习在行动.pdf:本书的pdf版本 MLiA_SourceCode.zip:(.py格式) 02用k最近邻居分类[ ] 03一次将数据集拆分为一个特征决策树[ ] 04用概率论分类朴素贝叶斯[ ] 05 Logistic回归[ ] 06支持向量机[ ] 07使用AdaBoost元算法[ ]改进分类 08预测数值回归[
  3. 所属分类:其它

    • 发布日期:2021-03-25
    • 文件大小:76546048
    • 提供者:weixin_42165508