您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 判别模型、生成模型与朴素贝叶斯方法

  2. 文档是在听取斯坦福大学机器学习网上公开课后,结合前人所写的文档整理而成,文档中包含了斯坦福大学教授NG在课堂上讲的见解、建议等,主要讲解了判别模型、生成模型与朴素贝叶斯方法及其应用。文档写得清晰易懂,适合初学者。
  3. 所属分类:讲义

    • 发布日期:2015-09-22
    • 文件大小:1048576
    • 提供者:king_jie0210
  1. 斯坦福大学机器学习课程个人笔记完整版

  2. 斯坦福大学机器学习课程个人笔记完整版.pdf 目录 (1)线性回归、logistic回归和一般回归 1 (2)判别模型、生成模型与朴素贝叶斯方法 10 (3)支持向量机SVM(上) 20 (4)支持向量机SVM(下) 32 (5)规则化和模型选择 45 (6)K-means聚类算法 50 (7)混合高斯模型和EM算法 53 (8)EM算法 55 (9)在线学习 62 (10)主成分分析 65 (11)独立成分分析 80 (12)线性判别分析 91 (13)因子分析 103 (14)增强学习 1
  3. 所属分类:专业指导

    • 发布日期:2017-09-04
    • 文件大小:11534336
    • 提供者:gaifertrertre
  1. 斯坦福机器学习ML公开课笔记1-15(完整版、带目录索引和NG原版讲义)

  2. 1-15节全部完整版讲义!超清分享~~~(附赠目录索引和NG原版讲义) 含金量高,独家整理~~ 目录如下: 公开课笔记1-2——线性规划、梯度下降、正规方程组 公开课笔记3——局部加权回归、逻辑斯蒂回归、感知器算法 公开课笔记4——牛顿方法、指数分布族、广义线性模型 公开课笔记5——生成学习、高斯判别、朴素贝叶斯 公开课笔记6——NB多项式模型、神经网络、SVM初步 公开课笔记7——最优间隔分类、原始/对偶问题、SVM对偶 公开课笔记8———核技法、软间隔分类器、SMO算法 公开课笔记9—偏差
  3. 所属分类:机器学习

    • 发布日期:2017-11-07
    • 文件大小:8388608
    • 提供者:u012416259
  1. 斯坦福Ng机器学习课程笔记(中文版)

  2. 【第1讲】 机器学习的动机与应用 【第2讲】 监督学习应用-线性回归 【第3讲】 线性回归的概率解释、局部加权回归、逻辑回归 【第4讲】 牛顿法、一般线性模型 【第5讲】 生成学习算法、高斯判别分析、朴素贝叶斯算法 【第6讲】 事件模型、函数间隔与几何间隔 【第7讲】 最优间隔分类器、拉格朗日对偶、支持向量机 【第8讲】 核方法、序列最小优化算法 【第9讲】 经验风险最小化 【第10讲】 交叉验证、特征选择 【第11讲】 贝叶斯统计、机器学习应用建议 【第12讲】 $k$-means算法、高斯
  3. 所属分类:讲义

    • 发布日期:2018-04-14
    • 文件大小:6291456
    • 提供者:difstone
  1. 斯坦福大学机器学习课程个人学习笔记.zip

  2. 吴恩达机器学习的笔记 非常好的机器学习资料 (Andrew Wu's notes on machine learning are excellent machine learning materials) 文件列表: (1)线性回归、logistic回归和一般回归.pdf (2)判别模型、生成模型与朴素贝叶斯方法.pdf (3)支持向量机SVM(上).pdf (4)支持向量机SVM(下).pdf (5)规则化和模型选择.pdf (6)K-means聚类算法.pdf (7)混合高斯模型和EM算法.
  3. 所属分类:机器学习

    • 发布日期:2019-07-07
    • 文件大小:5242880
    • 提供者:zhongrq88