点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 机器学习中的最优化算法总结
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
机器学习中的最优化算法总结
机器学习中的最优化算法总结下图给出了这些算法的分类与它们之间的关系: 接下来我们将按照这张图来展开进行讲解。 费马定理 对于一个可导函数,寻找其极值的统一做法是寻找导数为0的点,即费马定理。微积分中的 这一定理指出,对于可导函数,在极值点处导数必定为0: 对于多元函数,则是梯度为0 导数为0的点称为驻点。需要注意的是,导数为0只是函数取得极值的必要条件而不是充分条 件,它只是疑似极值点。是不是极值,是极大值还是极小值,还需要看更高阶导数。对于 元函数,假设x是驻点 如果 (x)>0,则在该
所属分类:
机器学习
发布日期:2019-07-02
文件大小:570368
提供者:
abacaba
机器学习算法基础学习总结
机器学习算法基础学习总结2.基本算法 2.1 Logistic回归 优点:计算代价不高,易于理解和实现。 缺点:容易欠拟合,分类精度可能不高 适用数据类型:数值型和标称型数据。 类别:分类算法。 试用场景:解决二分类问题。 简述: Logistic回归算法基于 Sigmoid函数,或者说 Sigmoid就是逻辑回归函数。 Sigmoid函数定义如下:1/(1-exp(-z))。函数值域范围(0,1)。可以用来做分 类器。 Sigmoid函数的函数曲线如下: 逻辑凹归模型分解如下:(1)首先将不同
所属分类:
机器学习
发布日期:2019-07-02
文件大小:312320
提供者:
abacaba
机器学习中的目标函数总结.docx
几乎所有的机器学习算法最后都归结为求解最优化问题,以达到我们想让算法达到的目标。为了完成某一目标,需要构造出一个“目标函数”来,然后让该函数取极大值或极小值,从而得到机器学习算法的模型参数。如何构造出一个合理的目标函数,是建立机器学习算法的关键,一旦目标函数确定,接下来就是求解最优化问题,这在数学上一般有现成的方案。
所属分类:
互联网
发布日期:2020-07-17
文件大小:199680
提供者:
guzhao9901