您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 机器学习中的最优化算法总结

  2. 机器学习中的最优化算法总结下图给出了这些算法的分类与它们之间的关系: 接下来我们将按照这张图来展开进行讲解。 费马定理 对于一个可导函数,寻找其极值的统一做法是寻找导数为0的点,即费马定理。微积分中的 这一定理指出,对于可导函数,在极值点处导数必定为0: 对于多元函数,则是梯度为0 导数为0的点称为驻点。需要注意的是,导数为0只是函数取得极值的必要条件而不是充分条 件,它只是疑似极值点。是不是极值,是极大值还是极小值,还需要看更高阶导数。对于 元函数,假设x是驻点 如果 (x)>0,则在该
  3. 所属分类:机器学习

    • 发布日期:2019-07-02
    • 文件大小:570368
    • 提供者:abacaba
  1. 机器学习算法基础学习总结

  2. 机器学习算法基础学习总结2.基本算法 2.1 Logistic回归 优点:计算代价不高,易于理解和实现。 缺点:容易欠拟合,分类精度可能不高 适用数据类型:数值型和标称型数据。 类别:分类算法。 试用场景:解决二分类问题。 简述: Logistic回归算法基于 Sigmoid函数,或者说 Sigmoid就是逻辑回归函数。 Sigmoid函数定义如下:1/(1-exp(-z))。函数值域范围(0,1)。可以用来做分 类器。 Sigmoid函数的函数曲线如下: 逻辑凹归模型分解如下:(1)首先将不同
  3. 所属分类:机器学习

    • 发布日期:2019-07-02
    • 文件大小:312320
    • 提供者:abacaba
  1. 机器学习中的目标函数总结.docx

  2. 几乎所有的机器学习算法最后都归结为求解最优化问题,以达到我们想让算法达到的目标。为了完成某一目标,需要构造出一个“目标函数”来,然后让该函数取极大值或极小值,从而得到机器学习算法的模型参数。如何构造出一个合理的目标函数,是建立机器学习算法的关键,一旦目标函数确定,接下来就是求解最优化问题,这在数学上一般有现成的方案。
  3. 所属分类:互联网

    • 发布日期:2020-07-17
    • 文件大小:199680
    • 提供者:guzhao9901