您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 机器学习算法笔记

  2. 本文总结博客中关于机器学习十大算法的详细过程,进行汇总,包括广义线性模型、softmax 回归 、逻辑回归、梯度下降法、Logistic 回归与牛顿迭代法、两种梯度下降法、相对熵(KL 散度)、K-Means 聚类算法 、朴素贝叶斯分类、决策树之 ID3 算法 、决策树之 C4.5 算法、 决策树之 CART 算法、随机森林、K-D 树、KNN 算法、BFGS 算法、L-BFGS 算法、文本特征属性选择。 十九、矩阵求导解最小二乘问题 二十、局部加权回归 二十一、最小二乘的概率解释
  3. 所属分类:机器学习

    • 发布日期:2018-11-21
    • 文件大小:1048576
    • 提供者:u013940210
  1. Deeplearning深度学习笔记v5.6_吴恩达.zip

  2. 一直以为机器学习的重点在于设计精巧、神秘的算法来模拟人类解决问题。学了这门课程才明白如何根据实际问题优化、调整模型更为重要。事实上,机器学习所使用的核心算法几十年来都没变过。 什么是机器学习呢?以二类分类监督学习为例,假设我们已经有了一堆训练数据,每个训练样本可以看作n维空间里的一个点,那么机器学习的目标就是利用统计算法算出一个将这个n维空间分成两个部分(也就是把空间切成两半)的分界面,使得相同类别的训练数据在同一个部分里(在分界面的同侧)。而所用的统计算法无非是数学最优化理论的那些算法,梯度
  3. 所属分类:深度学习

    • 发布日期:2019-05-24
    • 文件大小:23068672
    • 提供者:qq_23094611
  1. task1_Linear_regression.ipynb

  2. 机器学习之线性回归,及相关算法优化, 模型建立:线性回归原理、线性回归模型 学习策略:线性回归损失函数、代价函数、目标函数 算法求解:梯度下降法、牛顿法、拟牛顿法等 线性回归的评估指标 sklearn参数详解
  3. 所属分类:互联网

    • 发布日期:2020-04-20
    • 文件大小:199680
    • 提供者:qq_36427942
  1. 逻辑回归.zip

  2. 机器学习中的逻辑回归实验,有一组学生高考成绩及录取情况数据集,训练一个逻辑回归模型,使之可以对一组成绩进行分类,判断这组成绩是否能被学校录取。通过两种方法(牛顿法和梯度下降法)分别优化逻辑回归模型中的theta值,并依据所得的theta值绘制决策边界,利用所得的回归模型进行预测。
  3. 所属分类:机器学习

    • 发布日期:2019-07-14
    • 文件大小:3072
    • 提供者:qq_37665301
  1. python机器学习之神经网络(一)

  2. python有专门的神经网络库,但为了加深印象,我自己在numpy库的基础上,自己编写了一个简单的神经网络程序,是基于Rosenblatt感知器的,这个感知器建立在一个线性神经元之上,神经元模型的求和节点计算作用于突触输入的线性组合,同时结合外部作用的偏置,对若干个突触的输入求和后进行调节。为了便于观察,这里的数据采用二维数据。 目标函数是训练结果的误差的平方和,由于目标函数是一个二次函数,只存在一个全局极小值,所以采用梯度下降法的策略寻找目标函数的最小值。 代码如下: import n
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:60416
    • 提供者:weixin_38589774
  1. 机器学习之梯度下降法

  2. 1.基本概念 梯度下降法(Gradient descent)是一个一阶最优化算法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法。 2.几种梯度下降方法(针对线性回归算法) 2.1 批量梯度下降法 1.批量梯度下降法的特点及原理 运算量大:批量梯度下降法中的每一项计算:,要计算所有样本(共 m 个); 批量梯度下降法的梯度是损
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:214016
    • 提供者:weixin_38698149
  1. 优化算法之梯度下降(Gradient Descent)

  2. 一、梯度下降法 重申,机器学习三要素是:模型,学习准则,优化算法。这里讨论一下梯度下降法。 通常为了充分利用凸优化中的一些高效成熟的优化方法,像:共轭梯度、拟牛顿法等,所以呢很多的机器学习算法倾向于选择合适的模型和损失函数来构造一个凸函数作为优化的目标。但是呢,也有一些模型(例如神经网络)的优化目标是非凸的,以至于只能找到其局部最优解。 机器学习中,常用的优化算法就是梯度下降法,首先初始化参数θ0\theta_0θ0​,然后按照下列公式进行参数的更新: θt+1=θt−α∂R(θ)∂θ(式1)
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:167936
    • 提供者:weixin_38733281