一、基本分类:①监督学习(Supervisedlearning)数据集中的每个样本有相应的“正确答案”,根据这些样本做出预测,分有两类:回归问题和分类问题。步骤1:数据集的创建和分类步骤2:训练步骤3:验证步骤4:使用(1)回归问题举例例如:预测房价,根据样本集拟合出一条连续曲线。(2)分类问题举例例如:根据肿瘤特征判断良性还是恶性,得到的是结果是“良性”或者“恶性”,是离散的。监督学习:从给定的训练数据集中学习出一个函数(模型参数),当新的数据到来时,可以根据这个函数预测结果。监督学习的训练集