点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 机器学习算法——集成方法(Ensemble)之Stacking
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
机器学习算法——集成方法(Ensemble)之Stacking
本文来自于csdn,本文是基于《kaggle比赛集成指南》来进行总结的概述什么是集成学习,以及目前较为常用的技术。集成方法是指由多个弱分类器模型组成的整体模型,我们需要研究的是:①弱分类器模型的形式②这些弱分类器是如何组合为一个强分类器学习过机器学习相关基础的童鞋应该知道,集成学习有两大类——以Adaboost为代表的Boosting和以RandomForest为代表的Bagging。它们在集成学习中属于同源集成(homogenousensembles)方法;而今天我将主要对一种目前在kaggl
所属分类:
其它
发布日期:2021-02-24
文件大小:474112
提供者:
weixin_38553478
机器学习算法——集成方法(Ensemble)之Stacking
本文来自于csdn,本文是基于《kaggle比赛集成指南》来进行总结的概述什么是集成学习,以及目前较为常用的技术。 集成方法是指由多个弱分类器模型组成的整体模型,我们需要研究的是: ①弱分类器模型的形式 ②这些弱分类器是如何组合为一个强分类器学习过机器学习相关基础的童鞋应该知道,集成学习有两大类——以Adaboost为代表的Boosting和以RandomForest为代表的Bagging。它们在集成学习中属于同源集
所属分类:
其它
发布日期:2021-01-27
文件大小:473088
提供者:
weixin_38638596