点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 机器学习:该项目使用来自LendingClub的免费数据来构建和评估几种机器学习模型,以预测信用风险。我们采用了不同的技术来训练和评估班级不平衡的模型。使用不平衡学习和Scikit学习库-源码
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
机器学习:该项目使用来自Lending Club的免费数据来构建和评估几种机器学习模型,以预测信用风险。 我们采用了不同的技术来训练和评估班级不平衡的模型。 使用不平衡学习和Scikit学习库-源码
机器学习 该练习包括一方面使用不同的重采样技术来分析信用风险,另一方面使用集成技术来分析信用风险。 在第一部分中,我们将使用过采样,欠采样以及组合的(过高和不足)采样技术来查看哪种模型在预测信用风险方面做得更好。 在第二部分中,我们将使用不同的集成技术进行相同的操作,以查看哪种模型在预测信用风险方面也做得更好。 分析记录位于ipynb文件中。 重采样技术: 哪种型号的平衡准确度得分最高? 在本练习中,我们使用了4个模型:朴素的随机过采样,SMOTE过采样,欠采样和组合(上下采样)采样
所属分类:
其它
发布日期:2021-02-09
文件大小:16384
提供者:
weixin_42176827