点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 机器翻译机制
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
基于迁移学习和注意力机制的视频分类
基于迁移学习和注意力机制的视频分类,刘昊鑫,刘同存,受到图像分类和机器翻译的研究成果的启发,本文将其成功的体系结构设计(例如卷积神经网络和注意力机制)引入视频分类。本文尝试
所属分类:
其它
发布日期:2020-02-27
文件大小:912384
提供者:
weixin_38680393
《动手学深度学习》机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer
机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer机器翻译及其相关技术编码器和解码器编码器解码器束搜索贪婪搜索束搜索注意力机制与Seq2Seq模型计算背景变量Transformer 机器翻译及其相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 编码器和解码器 在翻译时,输入句子和输出句子往往不一样长,所以为了处理输入
所属分类:
其它
发布日期:2021-01-07
文件大小:271360
提供者:
weixin_38596485
《动手学深度学习》笔记 Task04 机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer
机器翻译和数据集 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 数据预处理 将数据集清洗、转化为神经网络的输入minbatch 分词 字符串—单词组成的列表 建立词典 单词组成的列表—单词id组成的列表 载入数据集 Encoder-Decoder encoder:输入到隐藏状态 decoder:隐藏状态到输出 Sequence to Sequen
所属分类:
其它
发布日期:2021-01-07
文件大小:315392
提供者:
weixin_38739837
《动手学深度学习》Task04:机器翻译及相关技术+注意力机制与Seq2seq模型+Transformer
文章目录1 机器翻译及相关技术1.1 机器翻译基本原理1.2 Encoder-Decoder1.3 Sequence to Sequence模型1.4 Beam Search2 注意力机制与Seq2seq模型2.1 注意力机制2.2 注意力机制的计算函数介绍2.3 引入注意力机制的Seq2seq模型3 Transformer3.1 Transformer结构概念3.2 Transformer结构层剖析3.3 Transformer之Encoder+Decoder 1 机器翻译及相关技术 1.1
所属分类:
其它
发布日期:2021-01-07
文件大小:742400
提供者:
weixin_38667408
Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer知识点总结
机器翻译 把一种语言自动翻译为另一种,输出的是单词序列(其长度可能与原序列不同) 步骤为:数据预处理 —> Seq2Seq模型构建 —> 损失函数 —> 测试 数据预处理: 读取数据。 处理编码问题,删除无效字符串 分词。把字符串转化为单词列表。 建立字典。把单词组成的列表转化为单词索引的列表 在tf、pytorch这类框架中要做padding操作,使一个batch数据长度相等 定义数据生成器。 Seq2Seq 6. 先用循环神经网络编码成一个向量再解码输出一个序列的元素。然
所属分类:
其它
发布日期:2021-01-07
文件大小:60416
提供者:
weixin_38682086
《动手学深度学习Pytorch版》Task4-机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer
机器翻译及相关技术 Task2中的循环神经网络部分,有实现预测歌词的功能。在那个任务中,训练数据的输入输出长度是固定的,而在机器翻译中,输出的长度是不固定的,所以不能直接用RNN来处理这种任务。 Encoder-Decoder框架是常用于机器翻译,对话系统这类场景的框架。 需要注意的是,在训练过程中Decoder的输入是真实的label,而预测时,输入是上一个ceil的预测值 机器翻译解码 通常用beam search。beam search是一种贪心算法,不是全局最优解。 注意力机制 在“
所属分类:
其它
发布日期:2021-01-07
文件大小:350208
提供者:
weixin_38653602
动手学DL|Task4 机器翻译及其技术+注意力机制与Seq2seq模型+Transformer
机器翻译及其技术 学习笔记 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 Encoder-Decoder encoder:输入到隐藏状态 decoder:隐藏状态到输出 Sequence to Sequence模型 模型: 训练 预测 具体结构 集束搜索 Beam Search 简单greedy search: 维特比算法:选择整体分数
所属分类:
其它
发布日期:2021-01-07
文件大小:472064
提供者:
weixin_38653664
Dive into deep learning task 04-机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer
6 机器翻译 机器翻译是一种序列到序列的模型。为了实现对语料的训练 ,需要对应的单词表,即平行语料。机器翻译要将序列处理成定长的向量,然后输入到rnn中(lstm,gru),然后变成中间向量,再通过decode方式编码输出最大可能的序列,即encoder-> vector->decoder的编解码方式。 语料要通过预处理(清洗,分词,转化成词典,转化成数据集),然后作词向量嵌入后,输入神经网络。 这就是所谓的seq2seq模型。简单的s2s模型的缺点是中间向量长度有限,不能充分表达输
所属分类:
其它
发布日期:2021-01-07
文件大小:55296
提供者:
weixin_38629920
《动手学深度学习》task4——机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer笔记
系统学习《动手学深度学习》点击这里: 《动手学深度学习》task1_1 线性回归 《动手学深度学习》task1_2 Softmax与分类模型 《动手学深度学习》task1_3 多层感知机 《动手学深度学习》task2_1 文本预处理 《动手学深度学习》task2_2 语言模型 《动手学深度学习》task2_3 循环神经网络基础 《动手学深度学习》task3_1 过拟合、欠拟合及其解决方案 《动手学深度学习》task3_2 梯度消失、梯度爆炸 《动手学深度学习》task3_3 循环神经网络进阶 《
所属分类:
其它
发布日期:2021-01-06
文件大小:78848
提供者:
weixin_38687968
机器翻译/注意力机制
机器翻译(machine translation, MT)是用计算机来实现不同语言之间翻译的技术。被翻译的语言通常称为源语言(source language),翻译成的结果语言称为目标语言(target language)。机器翻译即实现从源语言到目标语言转换的过程,是自然语言处理的重要研究领域之一。 早期机器翻译系统多为基于规则的翻译系统,需要由语言学家编写两种语言之间的转换规则,再将这些规则录入计算机。该方法对语言学家的要求非常高,而且我们几乎无法总结一门语言会用到的所有规则,更何况两种甚至
所属分类:
其它
发布日期:2021-01-06
文件大小:336896
提供者:
weixin_38745233
机器翻译,注意力机制,seq2seq模型
机器翻译 数据预处理(小罗同学总结) 编码——解码 seq2seq模型 读取数据,处理数据中的编码问题,并将无效的字符串删除 分词,分词的目的就是将字符串转换成单词组成的列表。目前有很多现成的分词工具可以直接使用,也可以直接按照空格进行分词(不推荐,因为分词不是很准确) 建立词典,将单词组成的列表编程单词id组成的列表,这里会得到如下几样东西 去重后词典,及其中单词对应的索引列表 还可以得到给定索引找到其对应的单词的列表,以及给定单词得到对应索引的字典。 原始语料所有词对应的词典索引的列
所属分类:
其它
发布日期:2021-01-06
文件大小:263168
提供者:
weixin_38642285
《动手学深度学习:机器翻译及其相关技术;注意力机制与Seq2Seq模型;Transformer》
机器翻译 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 训练 def train_ch7(model, data_iter, lr, num_epochs, device): # Saved in d2l model.to(device) optimizer = optim.Adam(model.parameters(), lr
所属分类:
其它
发布日期:2021-01-06
文件大小:28672
提供者:
weixin_38744962
TASK04-注意力机制-机器翻译-Transformer
将注意力机制放到这里,以后会用到。 练习题放在最前面: 关于Transformer描述正确的是: 在训练和预测过程中,解码器部分均只需进行一次前向传播。 Transformer 内部的注意力模块均为自注意力模块。 解码器部分在预测过程中需要使用 Attention Mask。 自注意力模块理论上可以捕捉任意距离的依赖关系。 答案解释 选项1:训练过程1次,预测过程要进行句子长度次 选项2:Decoder 部分的第二个注意力层不是自注意力,key-value来自编码器而query来自解码器 选项3
所属分类:
其它
发布日期:2021-01-06
文件大小:118784
提供者:
weixin_38744375
深度学习(四)————机器翻译及相关技术、注意力机制与Seq2seq模型、Transformer
目录 机器翻译及相关技术 注意力机制与seq2seq模型 Transformer 机器翻译及相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 机器翻译流程:数据预处理,主要模型:encode-decode,seq2seq 注意力机制与seq2seq模型 注意力机制:https://blog.csdn.net/mpk_no1/articl
所属分类:
其它
发布日期:2021-01-06
文件大小:191488
提供者:
weixin_38704565
seq2seq到加上attention机制,再整合成transformer
时间问题,,开个好头。 1.机器翻译有一个大问题,就是输入输出的序列长度不一定相等。于是设计出Encoder-Decoder模型 。* 于是就有了Sequence to Sequenceseq模型 简答来说就是在输出的时候:先输入bos,然后以eos为结束标记。 总结: Sequence to Sequence encoder、decoder的网络可以是任意RNN网络:LSTM,双向RNN等; 这里Encoder不需要用到每一个单元的output,只需把H传到Decoder作为初始输入;
所属分类:
其它
发布日期:2021-01-06
文件大小:607232
提供者:
weixin_38752074
伯禹AI – task 04 机器翻译、注意力机制与seq2seq模型、Transformer架构
(一)机器翻译及其相关技术 1. 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 数据预处理:将数据集清洗、转化为神经网络的输入minbatch 分词:字符串—单词组成的列表 建立字典:单词组成的列表—单词id组成的列表 Encoder-Decoder encoder:输入到隐藏状态 decoder:隐藏状态到输出 2. Sequence 2
所属分类:
其它
发布日期:2021-01-06
文件大小:109568
提供者:
weixin_38639747
笔记:动手学深度学习pytorch(机器翻译,Transformer,注意力机制和Sequence to sequence模型)
– 机器翻译 – 机器翻译与数据集 – 机器翻译 顾名思义,机器翻译就是将一段文本从一种语言翻译到另外一种语言,简称MT,而利用神经网络解决这个问题就被称为神经机器翻译(NMT)。 特征主要是输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 – 数据预处理 将数据集清洗、转化为神经网络的输入minbatch with open('/home/kesci/input/fraeng6506/fra.txt', 'r') as f: raw_text = f.read
所属分类:
其它
发布日期:2021-01-06
文件大小:1048576
提供者:
weixin_38582685
动手学习深度学习|机器翻译\注意力机制
机器翻译及相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 分词: 字符串—单词组成的列表 建立词典: 单词组成的列表—单词id组成的列表 Encoder-Decoder: 可以应用在对话系统、生成式任务中。 encoder:输入到隐藏状态 decoder:隐藏状态到输出 集束搜索(Beam Search) 维特比算法:选择整体分数最高的句
所属分类:
其它
发布日期:2021-01-06
文件大小:308224
提供者:
weixin_38626473
《动手学深度学习》Task04 :机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer
Task04 :机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer 1.机器翻译及相关技术 机器翻译和数据集 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 步骤: 1.读取数据 2.数据预处理 3.分词:将字符串变成单词组成的列表 4.建立词典:将单词组成的列表变成单词id组成的列表 5.Encoder-Decoder:
所属分类:
其它
发布日期:2021-01-06
文件大小:1048576
提供者:
weixin_38501045
机器翻译机制
机器翻译 机器翻译, 将一段文本从一种语言自动翻译为另一种语言。其 输出为单词序列。 处理步骤 数据预处理 分词 建立词典 输入模型 Encodr-Decoder Sequence to Sequence 注意力机制 看作适合处理由一个句子(或篇章)生成另外一个句子(或篇章)的通用处理模型。对于句子对。 ——–(思考:对很通用,X是一个问句,Y是答案;X是一个句子,Y是抽取的关系三元组;X是汉语句子,Y是汉语句子的英文翻译。等等),我们的目标是给定输入句子X,期待通过Encoder-Dec
所属分类:
其它
发布日期:2021-01-20
文件大小:376832
提供者:
weixin_38536841
«
1
2
3
4
5
»