您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. BP神经网络模型与学习算法

  2.  在人工神经网络发展历史中,很长一段时间里没有找到隐层的连接权值调整问题的有效算法。直到误差反向传播算法(BP算法)的提出,成功地解决了求解非线性连续函数的多层前馈神经网络权重调整问题。   BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后
  3. 所属分类:网络基础

    • 发布日期:2010-05-14
    • 文件大小:872448
    • 提供者:lhfzhong2008
  1. 神经网络 MATLAB神经网络应用设计

  2. 张德丰 (2010). "MATLAB神经网络应用设计." 只有代码 "目 录 前言 第1章 神经网络概述 1 1.1 神经网络的基本概念 1 1.1.1 生物神经元的结构与功能特点 1 1.1.2 人工神经元模型 1 1.1.3 神经网络的结构及工作方式 3 1.1.4 神经网络的学习 4 1.2 神经网络的发展和应用 7 1.2.1 神经网络的发展 7 1.2.2 神经网络的研究内容 8 1.2.3 神经网络的应用 8 1.3 神经网络的特点 8 1.4 MATLAB语言及入门 9 1.4
  3. 所属分类:网络基础

    • 发布日期:2010-12-02
    • 文件大小:19456
    • 提供者:qq112964734
  1. 人工神经网络,BP神经网络算法

  2. 人工神经网络 BP神经网络算法 梯度下降算法 感知器训练法则,权值,阈值
  3. 所属分类:网络基础

    • 发布日期:2011-03-07
    • 文件大小:821248
    • 提供者:sdnusqy
  1. 神经网络语音信号处理

  2. 神经网络语言信号处理 %%% 训练数据预测数据提取及归一化 %% 网络结构初始化...... %% 网络训练....... %% 网络预测输出 .... %% 权值阀值修正.... %% 语音特征信号分类.... %% 结果分析....
  3. 所属分类:其它

    • 发布日期:2011-04-07
    • 文件大小:4096
    • 提供者:lalula_123
  1. 神经网络bp算法的研究与应用

  2. BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小
  3. 所属分类:C/C++

    • 发布日期:2011-04-13
    • 文件大小:5120
    • 提供者:ydj8008
  1. BP神经网络 源代码

  2. BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
  3. 所属分类:C/C++

    • 发布日期:2011-04-22
    • 文件大小:247808
    • 提供者:xinsuixingdong
  1. BP神经网络MATLAB例程

  2. BP神经网络是一个前向网络,它利用误差反向传播算法对网络进行训练,结构简单,可塑性强。本例选择3层BP神经网络(隐层为1层)来逼近函数,单输入单输出,隐层包含7个神经元,预设精度为0.1,学习率设为0.1,循环次数为5000次,达到循环次数,或结果达到预设精度要求,结束计算。激活函数选择双曲函数,采用梯度下降法,通过神经元的输入和误差,以及权值的学习速率来计算权值的变化率。将输入提供给网络后,神经元的激活值从输入层经各中间层向输出层传播,输出层的神经元获得网络的输入相应。接下来,按照减少目标输
  3. 所属分类:其它

    • 发布日期:2012-12-28
    • 文件大小:4096
    • 提供者:highflower
  1. BP神经网络的数据分类算法matlab源码

  2. 人工神经网络和遗传算法都是将生物学原理应用于计算机科学的仿生学理论成果。由于它们具有极强的解决问题的能力,近年来引起了众多学者的兴趣与参与,已成为学术界跨学科的热门专题之一。 在人工神经网络的实际应用中,约90%的人工神经网络模型都是采用BP网络或者是它的变化形式,它也是前馈网络的核心部分,BP网络广泛应用于函数逼近、模式识别/分类、数据压缩等。现已成为人工智能研究的重要领域之一。然而,由于BP算法是一种梯度下降搜索方法,因而不可避免地存在固有的不足,如收敛速度慢、易陷入误差函数的局部极小点,
  3. 所属分类:专业指导

    • 发布日期:2013-05-25
    • 文件大小:4096
    • 提供者:checkpaper
  1. 神经网络理论与MATLAB7实现.part1 (PDF)

  2. 第1章 概述 神经网络理论与MATLAB7实现.part2的下载地址: http://download.csdn.net/source/663497 1.1 MATLAB语言简介 1.1.1 MATLAB概述 1.1.2 MATLAB语言特点 1.1.3 MATLAB 7的安装 1.1.4 MATLAB 7的新特点 1.1.5 MATLAB 7的新产品及更新产品 1.1.6 Simulink 6.0的新特点 1.2 MATLAB快速入门 1.2.1 命令行窗口 1.2.2 其他重要窗口 1.2
  3. 所属分类:网络基础

    • 发布日期:2008-10-03
    • 文件大小:20971520
    • 提供者:ndongf
  1. 神经网络理论与MATLAB7实现.part2(PDF)

  2. 神经网络理论与MATLAB7实现.part1的下载地址: http://download.csdn.net/source/663471 第1章 概述 1.1 MATLAB语言简介 1.1.1 MATLAB概述 1.1.2 MATLAB语言特点 1.1.3 MATLAB 7的安装 1.1.4 MATLAB 7的新特点 1.1.5 MATLAB 7的新产品及更新产品 1.1.6 Simulink 6.0的新特点 1.2 MATLAB快速入门 1.2.1 命令行窗口 1.2.2 其他重要窗口 1.2
  3. 所属分类:网络基础

    • 发布日期:2008-10-03
    • 文件大小:17825792
    • 提供者:ndongf
  1. 神经网络理论与MATLAB7实现

  2. 第1章 概述 1.1 MATLAB语言简介 1.1.1 MATLAB概述 1.1.2 MATLAB语言特点 1.1.3 MATLAB 7的安装 1.1.4 MATLAB 7的新特点 1.1.5 MATLAB 7的新产品及更新产品 1.1.6 Simulink 6.0的新特点 1.2 MATLAB快速入门 1.2.1 命令行窗口 1.2.2 其他重要窗口 1.2.3 Editor/Debugger窗口 1.2.4 MATLAB帮助系统 1.2.5 神经网络工具箱快速入门 1.3 神经网络发展史
  3. 所属分类:专业指导

    • 发布日期:2015-07-05
    • 文件大小:38797312
    • 提供者:lengwuqin
  1. 人工神经网络MATLAB程序代码

  2. 第一章 人工神经网络………………………………………………… 3 §1.1人工神经网络简介………………………………………………………… 3 1.1 人工神经网络的起源 …………………………………………………… 3 1.2 人工神经网络的特点及应用 …………………………………………… 3 §1.2人工神经网络的结构………………………………………………… 4 2.1 神经元及其特性………………………………………………………… 5 2.2 神经网络的基本类型 ……………………………………………… 6
  3. 所属分类:讲义

    • 发布日期:2016-02-26
    • 文件大小:1048576
    • 提供者:qq_28218189
  1. 人工神经网络电子讲稿和课本

  2. 人工神经网络电子讲稿和课本 适合初学者 人工神经网络(Artificial Neural Networks, ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。(引自《环球科学》20
  3. 所属分类:网络基础

    • 发布日期:2008-12-07
    • 文件大小:1048576
    • 提供者:iterate
  1. BP神经网络MATLAB源代码

  2. BP(BackPropagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hiddenlayer)和输出层(outputlayer)
  3. 所属分类:网络基础

    • 发布日期:2018-02-05
    • 文件大小:4096
    • 提供者:vasi1ii
  1. bp神经网络工具箱

  2. 更加完美运行神经网络程序1) 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数。这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力。 2) 自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输出、输出数据间的“合理规则”,并自适应的将学习内容记忆于网络的权值中。即BP神经网络具有高度自学习和自适应的能力。 3) 泛化能力:所谓泛化能力是指在设计模式分类器时,即要考虑网络
  3. 所属分类:其它

    • 发布日期:2018-02-12
    • 文件大小:986
    • 提供者:qq_41728842
  1. 并行混沌神经网络建模方法应用研究

  2. 针对开关磁阻电动机的非线性特点及其现有建模方法存在初始网络权值参数随机给定和易于陷入局部最小点的缺点,提出了一种采用并行优化混沌BP神经网络的建模方法。该方法首先利用混沌系统对神经网络权值向量、阈值向量进行初始优化,然后利用BP神经网络的Levenberg-Marquardt算法进行收敛训练,如果陷入局部最小点则再次使用并行混沌搜索进一步优化模型,使模型具有精度高、速度快的特点。模型训练和开关磁阻电动机调速系统动态仿真结果表明,采用该方法建立的模型运行平稳,系统动态性能好,响应速度快。
  3. 所属分类:其它

    • 发布日期:2020-05-13
    • 文件大小:759808
    • 提供者:weixin_38607552
  1. 品位估值的自适应径向基神经网络构建技术

  2. 在简要分析常用储量计算方法与BP神经网络预测方法存在缺陷的基础上,分析了径向基神经网络隐层节点参数在映射机理上与地质统计学方法理论上的一致性,以及其权系数能解析方式求解、可避免网络训练过程陷入局部最优乃至不收敛现象的特征,提出了构建径向基函数神经网络进行矿床品位估值模型的研究思路。通过多方案分析,得出了待估点三维坐标及周围样品点个数是影响径向基函数神经网络模型估值精度的主要因素,给出了输入节点变量空间的基本配置方式——3个坐标加周边8个样品点品位。针对实际工程中样品空间较大的特征,分析了隐层中心
  3. 所属分类:其它

    • 发布日期:2020-05-13
    • 文件大小:391168
    • 提供者:weixin_38633897
  1. 幂激励前向神经网络改进下的瓦斯涌出量预测

  2. 结合SPSS软件的最大方差旋转的因子分析法,设计出依据较少数据进行扩充丰富的随机调和算法,改进了双输入幂激励前向神经网络.该算法有效地解决了幂激励前向神经网络在采样数据较少情况下预测精度偏低的问题,改进的双输入幂激励前向神经网络需要利用权值直接确定法和最优结构法确定最优结构,然后利用随机调和算法在有限采样数据下生成大量训练数据,随之确定最终网络的最优权值,最后在给定次数的循环下确定验证数据的预测值.数值仿真结果表明该算法具有较高的预测精度.
  3. 所属分类:其它

    • 发布日期:2020-05-07
    • 文件大小:447488
    • 提供者:weixin_38663151
  1. 露天煤矿爆破振动的BP神经网络预测

  2. 由于爆破振动效果的影响因素繁多,能够综合考虑各因素并对爆破振动进行合理预测亟待研究。通过分析爆破各影响因子与爆破监测数据间的相互关系,利用神经网络之间的权值训练,找出变量之间的非线性关系,然后用训练好的神经网络对爆破振动进行预测。模型预测结果与实际监测得到的爆破振动数据基本吻合,与常规经验公式的预测效果对比表明,基于BP神经网络的爆破振动预测模型的预测方法更为简单适用,精度高而且误差更小,说明将BP神经网络模型应用到爆破效果预测中是适用的和正确的。利用该模型获得了满足布沼坝露天煤矿西帮生产爆破要
  3. 所属分类:其它

    • 发布日期:2020-05-03
    • 文件大小:325632
    • 提供者:weixin_38570202
  1. 基于CPSO-BP神经网络的冲击地压预测

  2. 针对预测冲击地压的传统方法存在的弊端,提出了一种基于混沌(Chaos)优化粒子群的BP神经网络算法。该算法将混沌、粒子群、BP神经网络结合起来,通过混沌粒子群算法寻优得到BP神经网络的最优权值和阈值初始值,然后进行网络训练和测试。该算法对冲击地压的预测取得了较好的效果。
  3. 所属分类:其它

    • 发布日期:2020-04-28
    • 文件大小:234496
    • 提供者:weixin_38535808
« 12 3 4 5 6 7 8 9 10 »