针对现有的食用油检测技术无法快速、准确地识别市售食用油的问题,提出了一种快速辨识食用油的方法。采用激光诱导荧光技术(LIF)获取油样的荧光光谱数据,然后采用主成分分析法提取光谱数据的特征信息,之后采用飞蛾-扑火优化器和核极限学习机相结合的算法建立多元分类学习模型,最后用该模型识别油样的类别。实验油样选取5种样本,每种样本采集150组荧光光谱,然后随机抽取600个样本用于学习模型的训练,剩余的150个用于测试训练好的模型。结果表明:在测试集上的平均分类准确率方面,该模型与极限学习机、反向传播神经网