为保证反应堆的安全运行,需要采用多种检测技术确保燃料芯块质量。针对燃料芯块表面裂纹检测中因图像对比度低、背景复杂而导致的裂纹误检率高的问题,提出了一种基于卷积神经网络(CNN)和Beamlet算法相结合的表面裂纹检测算法。对图像进行等尺度分割作为裂纹识别模型(CrackCNN)的训练和测试样本;采用训练完成的CrackCNN对图像中含裂纹的区域进行识别和定位;采用Beamlet算法针对含裂纹区域进行裂纹检测。该算法将CNN和Beamlet相结合,充分发挥两者的优势,有效降低了裂纹误检概率,提高了