业务流程中事件日志的分析与预测可以为流程监控和管理提供决策信息,现有研究方法多针对特定单个任务预测,不同任务间预测方法的可迁移性不高。多任务预测可以共享多个任务间的信息,提升单个任务预测的精度,但现有研究对重复活动的多任务预测效果有待提高。针对以上问题,提出一种注意力机制与双向长短时记忆结合的深度神经网络模型,实现对业务流程中重复活动和时间的多任务预测。预测模型可以共享不同任务已经学到的特征表示,实现多任务并行训练。在多个数据集中对不同方法进行对比,结果表明,所提方法提高了预测效率和预测精度,尤