移动智能终端的快速发展为用户的位置服务提供了新的应用,以用户位置行为分析为核心的服务技术具有重要的商业应用价值。用户位置及其活动特点和趋势与其所在位置的实际状况及本人意愿密切联系,用户所在位置的资源和状况信息直接影响了用户的位置行为。本文引入小世界网络模型分析用户的位置行为特征,发现用户基于位置的行为属性和聚类。采用推荐度计算方法描述结点之间的相似性,通过将用户位置作为一个树根,把位置资源作为用户的兴趣结点,将兴趣搜索转换为最短路径计算问题。通过改进的最短路径算法计算根结点到各个结点的推荐度,分