您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 数据挖掘在各行业的应用论文

  2. 数据挖掘在各行业的应用论文 数据仓库与数据挖掘.caj 空间数据挖掘技术.caj 数据仓库与数据挖掘技术及其在科技情报业的应用前景.caj 相关案件的数据挖掘.caj 数据挖掘技术.caj 一种实时过程控制中的数据挖掘算法研究.caj EIS 环境下的数据挖掘技术的研究.caj 数据挖掘及其工具的选择.caj 数据挖掘技术与中国商业银行业务发展策略.caj 数据挖掘工具DMTools的设计与实现.caj 数据仓库、数据挖掘在银行中的应用.caj 基于信息熵的地学空间数据挖掘模型.caj 数据挖
  3. 所属分类:其它

    • 发布日期:2010-04-19
    • 文件大小:13631488
    • 提供者:liaosaien
  1. 数据挖掘各行业应用论文

  2. 数据挖掘在各行业的应用论文 数据仓库与数据挖掘.caj 空间数据挖掘技术.caj 数据仓库与数据挖掘技术及其在科技情报业的应用前景.caj 相关案件的数据挖掘.caj 数据挖掘技术.caj 一种实时过程控制中的数据挖掘算法研究.caj EIS 环境下的数据挖掘技术的研究.caj 数据挖掘及其工具的选择.caj 数据挖掘技术与中国商业银行业务发展策略.caj 数据挖掘工具DMTools的设计与实现.caj 数据仓库、数据挖掘在银行中的应用.caj 基于信息熵的地学空间数据挖掘模型.caj 数据挖
  3. 所属分类:数据库

    • 发布日期:2013-06-20
    • 文件大小:13631488
    • 提供者:caiyewen1992
  1. 数据挖掘论文合集-242篇(part1)

  2. EIS 环境下的数据挖掘技术的研究.caj FCC油品质量指标智能监测系统的数据挖掘与修正技术.caj IDSS 中数据仓库和数据挖掘的研究与实现.caj InternetWeb数据挖掘研究现状及最新进展.caj Internet数据挖掘原理及实现.caj Min-Max模糊神经网络的应用研究.pdf OLAP与数据挖掘一体化模型的分析与讨论.caj OLAP和数据挖掘技术在Web日志上的应用.caj ON-LINE REDUCING MACHINING ERRORS IN BORING OP
  3. 所属分类:其它

    • 发布日期:2009-01-13
    • 文件大小:10485760
    • 提供者:night_furry
  1. 数据挖掘论文合集-242篇(part2)

  2. EIS 环境下的数据挖掘技术的研究.caj FCC油品质量指标智能监测系统的数据挖掘与修正技术.caj IDSS 中数据仓库和数据挖掘的研究与实现.caj InternetWeb数据挖掘研究现状及最新进展.caj Internet数据挖掘原理及实现.caj Min-Max模糊神经网络的应用研究.pdf OLAP与数据挖掘一体化模型的分析与讨论.caj OLAP和数据挖掘技术在Web日志上的应用.caj ON-LINE REDUCING MACHINING ERRORS IN BORING OP
  3. 所属分类:其它

    • 发布日期:2009-01-13
    • 文件大小:10485760
    • 提供者:mathlf2015
  1. 数据挖掘论文合集-242篇(part3)

  2. EIS 环境下的数据挖掘技术的研究.caj FCC油品质量指标智能监测系统的数据挖掘与修正技术.caj IDSS 中数据仓库和数据挖掘的研究与实现.caj InternetWeb数据挖掘研究现状及最新进展.caj Internet数据挖掘原理及实现.caj Min-Max模糊神经网络的应用研究.pdf OLAP与数据挖掘一体化模型的分析与讨论.caj OLAP和数据挖掘技术在Web日志上的应用.caj ON-LINE REDUCING MACHINING ERRORS IN BORING OP
  3. 所属分类:其它

    • 发布日期:2009-01-13
    • 文件大小:5242880
    • 提供者:hutingt77
  1. 浅谈数据仓库建设中的数据建模方法

  2. 如何理解TERADATA 的 FS-LDM 概念模型是什么? 雪花模型和星型模型的区别,维度建模的应用场景
  3. 所属分类:算法与数据结构

    • 发布日期:2018-07-03
    • 文件大小:2097152
    • 提供者:cui_21century
  1. 浅谈数据仓库建设中的数据建模方法

  2. 所谓水无定势,兵无常法。不同的行业,有不同行业的特点,因此,从业务角度看,其相应的数据模型是千差万别的。目前业界较为主流的是数据仓库厂商主要是IBM和NCR,这两家公司的除了能够提供较为强大的数据仓库平台之外,也有各自的针对某个行业的数据模型。例如,在银行业,IBM有自己的BDWM(Bankingdatawarehousemodel),而NCR有自己的FS-LDM模型。在电信业,IBM有TDWM(TelecomDatawarehousemodel),而NCR有自己的TS-LDM模型。因此,我们看
  3. 所属分类:其它

    • 发布日期:2021-03-04
    • 文件大小:342016
    • 提供者:weixin_38747566
  1. 浅谈数据仓库建设中的数据建模方法

  2. 所谓水无定势,兵无常法。不同的行业,有不同行业的特点,因此,从业务角度看,其相应的数据模型是千差万别的。目前业界较为主流的是数据仓库厂商主要是IBM和NCR,这两家公司的除了能够提供较为强大的数据仓库平台之外,也有各自的针对某个行业的数据模型。例如,在银行业,IBM有自己的BDWM(Bankingdatawarehousemodel),而NCR有自己的FS-LDM模型。在电信业,IBM有TDWM(TelecomDatawarehousemodel),而NCR有自己的TS-LDM模型。因此,我们看
  3. 所属分类:其它

    • 发布日期:2021-02-26
    • 文件大小:342016
    • 提供者:weixin_38614391
  1. 浅谈数据仓库建设中的数据建模方法

  2. 所属分类:其它

    • 发布日期:2021-01-31
    • 文件大小:342016
    • 提供者:weixin_38711972
  1. 浅谈数据仓库建设中的数据建模方法

  2. 所属分类:其它

    • 发布日期:2021-01-31
    • 文件大小:342016
    • 提供者:weixin_38698174