您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 深度学习之卷积神经网络CNN模式识别VS代码

  2. 深度学习之卷积神经网络CNN做手写体识别的VS代码。支持linux版本和VS2012版本。 tiny-cnn: A C++11 implementation of convolutional neural networks ======== tiny-cnn is a C++11 implementation of convolutional neural networks. design principle ----- * fast, without GPU 98.8% accuracy o
  3. 所属分类:C++

    • 发布日期:2014-02-18
    • 文件大小:10485760
    • 提供者:dpstill
  1. 深度学习之卷积神经网络CNN用于人脸检测C++库

  2. 深度学习的卷积神经网络CNN用于做人脸检测等CV算法的C++库。
  3. 所属分类:C++

    • 发布日期:2014-02-19
    • 文件大小:4194304
    • 提供者:dpstill
  1. 卷积神经网络实现情感分类

  2. 用tensorflow框架,深度学习中卷积神经网络cnn模型,对电影评论进行情感二分类。
  3. 所属分类:Python

    • 发布日期:2016-11-07
    • 文件大小:11534336
    • 提供者:qq_33064189
  1. 卷积神经网络

  2. 这是一份关于卷积神经网络的详细描述,看了此报告之后可以大致了解深度学习中卷积神经网络。
  3. 所属分类:深度学习

    • 发布日期:2018-03-06
    • 文件大小:2097152
    • 提供者:hsdshilin
  1. 深度学习之卷积神经网络

  2. 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含[卷积](https://baike.baidu.com/item/卷积/9411006)计算且具有深度结构的[前馈神经网络](https://baike.baidu.com/item/前馈神经网络/7580523)(Feedforward Neural Networks),是[深度学习](https://baike.baidu.com/item/深度学习/3729729)(deep learning)
  3. 所属分类:深度学习

    • 发布日期:2020-03-27
    • 文件大小:20480
    • 提供者:weixin_43788143
  1. 使用卷积神经网络和设定距离的年龄不变性人脸识别

  2. 基于面部特征的生物特征安全系统由于对象的人内面部外观的变化可追溯到诸如姿势,照明,表情和衰老等因素,因此面临着艰巨的任务。 本文提出了一种深度学习和基于集合的方法来应对衰老的人脸识别。 在不同时间拍摄的每个对象的图像被视为单个集合,然后将其与属于其他对象的图像集进行比较。 使用深度学习的卷积神经网络特征提取面部特征。 我们的实验结果表明,无论是人脸识别还是人脸验证,基于集合的识别方法都比基于单例的方法要好。 我们还发现,通过使用基于集合的识别,比从年龄较大的对象识别年龄较小的对象更容易。
  3. 所属分类:其它

    • 发布日期:2020-06-03
    • 文件大小:1000448
    • 提供者:weixin_38710578
  1. 基于深度学习的卷积神经网络.rar

  2. 基于深度学习的卷积神经网络matlab代码,直接利用matlab自带的CNN工具包设计深度学习网络,代码可以直接运行,也便于修改,主代码很短,很容易理解。提供全套训练数据与测试数据,稀有资源
  3. 所属分类:深度学习

    • 发布日期:2020-06-13
    • 文件大小:33554432
    • 提供者:weixin_39514521
  1. 机器学习-14. 卷积神经网络深入、AlexNet模型

  2. 人工智能基础视频教程零基础入门课程 第十四章 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 Tenso
  3. 所属分类:机器学习

    • 发布日期:2020-07-16
    • 文件大小:708837376
    • 提供者:suolong123
  1. 机器学习-13. 卷积神经网络、CNN识别图片(下)

  2. 人工智能基础视频教程零基础入门课程 第十三章(下) 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 Te
  3. 所属分类:机器学习

    • 发布日期:2020-07-16
    • 文件大小:1002438656
    • 提供者:suolong123
  1. 猫狗深度学习,卷积神经网络(自己写的)

  2. 根据深度学习的原理,用pytorch实现猫狗分类算法,识别率98%。时间在20ms内。利用自己修改的卷积神经网络实现的,值得学习的好例子
  3. 所属分类:深度学习

    • 发布日期:2020-10-23
    • 文件大小:869269504
    • 提供者:yangyangdajia
  1. TensorFlow深度学习之卷积神经网络CNN

  2. 一、卷积神经网络的概述 卷积神经网络(ConvolutionalNeural Network,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等。CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程。在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:141312
    • 提供者:weixin_38682279
  1. 深度学习8-卷积神经网络基础

  2. 卷积神经网络基础二维卷积层互相关运算与卷积运算特征图与感受野卷积层的两个超参数多输入通道和多输出通道卷积层与全连接层的对比卷积层的实现池化 主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。最常见的是二维卷积层,常用于处理图像数据。 二维卷积层 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:135168
    • 提供者:weixin_38555350
  1. 动手学深度学习之-卷积神经网络基础

  2. 卷积神经网络基础 参考伯禹学习平台《动手学深度学习》课程内容内容撰写的学习笔记 原文链接:https://www.boyuai.com/elites/course/cZu18YmweLv10OeV/video/whY-8BhPmsle8wyEEyTST 感谢伯禹平台,Datawhale,和鲸,AWS给我们提供的免费学习机会!! 总的学习感受:伯禹的课程做的很好,课程非常系统,每个较高级别的课程都会有需要掌握的前续基础知识的介绍,因此很适合本人这种基础较差的同学学习,建议基础较差的同学可以关注伯禹
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:132096
    • 提供者:weixin_38740596
  1. 结构-纹理分解下基于深度学习的卷积神经网络的有效去除伪像的方法

  2. 鉴于压缩退化图像的最佳恢复,本文提出了一种基于深度学习的卷积神经网络,在结构纹理分解的基础上,去除块状伪影的有效方法。 首先,通过总变化优化决策将退化图像分解为结构和纹理两部分。 然后,设计一个卷积神经网络以消除纹理部分中存在的阻塞伪像。 最后,将恢复的纹理部分与结构部分进行合成,以形成最终的最佳恢复图像。 实验结果证明了该方法在主观和客观上都可以消除阻塞伪像的性能优势。 最佳还原图像的客观质量指标。
  3. 所属分类:其它

    • 发布日期:2021-03-24
    • 文件大小:2097152
    • 提供者:weixin_38667408
  1. 吴恩达深度学习 | (17) 卷积神经网络专项课程第一周编程作业-附件资源

  2. 吴恩达深度学习 | (17) 卷积神经网络专项课程第一周编程作业-附件资源
  3. 所属分类:互联网

  1. 吴恩达深度学习 | (17) 卷积神经网络专项课程第一周编程作业-附件资源

  2. 吴恩达深度学习 | (17) 卷积神经网络专项课程第一周编程作业-附件资源
  3. 所属分类:互联网

  1. 深度学习与卷积神经网络

  2. 本文来自于个人微博,本文通过几种比较流行的卷积神经网络的结构图,简单的介绍了卷积审计网络的定义。简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算。(具体含义或者数学公式可以查阅相关资料)如下图就表示卷积的运算过程:(图1)卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强,并且降低噪音.这里以常用的激活函数sigmoid为例:把上述的计算结果269带入此公式,得出f(x)=1如图是一个人工神经元的模型:(图2)对于每一个神经元,都包含以下几部分:x:表示输入w:
  3. 所属分类:其它

    • 发布日期:2021-02-25
    • 文件大小:513024
    • 提供者:weixin_38570459
  1. 深度学习与卷积神经网络

  2. 本文来自于个人微博,本文通过几种比较流行的卷积神经网络的结构图,简单的介绍了卷积审计网络的定义。简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算。(具体含义或者数学公式可以查阅相关资料)如下图就表示卷积的运算过程:(图1)卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强,并且降低噪音.这里以常用的激活函数sigmoid为例:把上述的计算结果269带入此公式,得出f(x)=1如图是一个人工神经元的模型:(图2)对于每一个神经元,都包含以下几部分:x:表示输入w:
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:505856
    • 提供者:weixin_38609002
  1. 《动手学深度学习》卷积神经网络基础;leNet;卷积神经网络进阶

  2. 卷积神经网络基础;leNet;卷积神经网络进阶卷积神经网络基础二位互相关运算二维卷积层互相关运算与卷积运算特征图与感受野填充和步幅填充:在输入的高宽两侧填充元素,通常填充0。步幅:卷积核在输入数组上每次滑动的行数列数。多输入通道和多输出通道1×11×11×1卷积层池化LeNetLeNet模型卷积神经网络进阶AlexNet使用重复元素的网络(VGG)网络中的网络(NIN)GoogleNet 卷积神经网络基础 介绍的是最常见的二维卷积层,常用于处理图像数据。 二位互相关运算 卷积核数组在输入数组上
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:516096
    • 提供者:weixin_38522636
  1. MachineLearning学习——0220——深度学习之卷积神经网络、自编码器

  2. 参考:https://github.com/apachecn/vt-cs4624-pyml-zh/blob/master/docs/22.md https://github.com/apachecn/vt-cs4624-pyml-zh/blob/master/docs/23.md 由于之前有了解CNN,该文章将跳过大部分细节,仅供本人记录学习过程用 卷积神经网络Convolutional Neural Network 介绍:与多层感知机的结构很相似:输入层,一些隐藏层,输出层,这些层多由卷积层、
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:135168
    • 提供者:weixin_38652870
« 12 3 4 5 6 7 8 9 10 ... 50 »