采用相空间直接观察法和行为复杂性算法,系统地分析了新型TD-ERCS离散混沌系统产生的伪随机序列的复杂性,得出了其复杂性变化规律.在Kolmogorov复杂性基础上,应用经典的Limpel-Ziv算法,ApEn算法和PE算法,从一维时间序列到多维相空间重构两方面计算了TD-ERCS离散混沌伪随机序列的复杂度大小.计算结果表明,TD-ERCS系统的行为复杂性高,而且该系统的复杂性大小随系统参数改变的变化范围小,是一个复杂性非常稳定的全域性离散混沌系统,其产生的混沌伪随机序列适合于信息加密或扩频通信