您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 灰狼优化和二维经验模态分解优化的自适应脉冲耦合神经网络去除图像中的椒盐噪声

  2. 针对脉冲耦合神经网络(PCNN)的降噪效果差和参数不确定性的问题,提出了一种采用灰狼优化(GWO)和二维经验模态分解(BEMD)优化的自适应PCNN的混合图像去噪方法。 ), 被表达。 BEMD用于将原始图像分解为多层图像分量。 在运行GWO以完成PCNN参数优化之后,使用自适应PCNN滤波方法来补救与不同图像分量相对应的污染噪声点,然后可以从中获得去噪图像分量的重构。 通过对图像去噪结果的分析,提出的方法的主要优点如下:(i)该方法有效地解决了由关键的PCNN参数确定问题引起的缺陷; (ii)
  3. 所属分类:其它

    • 发布日期:2021-03-15
    • 文件大小:2097152
    • 提供者:weixin_38613173