为对矿山开采爆破过程中边坡的稳定性进行预测,将因子分析、免疫算法及最小二乘支持向量机相结合,共提取爆破振幅、主频率、主频率持续时间、岩石重度、粘聚力、边坡角、边坡高度7个影响指标.通过因子分析对样本数据进行降维,提取出一个公共因子.利用实际测量的29组样本数据对模型进行训练,构建基于因子分析和IGA-LSSVM的边坡稳定性预测模型;采用回代估计法对模型进行检验,误判率为3/29.使用其他5组样本检验模型的泛化能力,同时与基本最小二乘支持向量机进行对比,结果表明:所得模型的预测精度高于基本最小二乘