您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 目标跟踪算法综述_孟琭.pdf

  2. 目标跟踪一直以来都是计算机视觉领域的关键问题, 最近随着人工智能技术的飞速发展, 运动目标跟踪问题得到了越来越多的关注. 本文对主流目标跟踪算法进行了综述, 首先, 介绍了目标跟踪中常见的问题, 并由时间顺序对目标跟踪算法进行了分类: 早期的经典跟踪算法、基于核相关滤波的跟踪算法以及基于深度学习的跟踪算法. 接下来, 对每一类中经典的跟踪算法的原始版本和各种改进版本做了介绍、分析以及比较. 最后, 使用 OTB-2013 数据集对目标跟踪算法进行测试, 并对结果进行分析, 得出了以下结论: 1
  3. 所属分类:图像处理

    • 发布日期:2019-08-21
    • 文件大小:1048576
    • 提供者:qq_28005905
  1. 融合上下文和重定位的加权相关滤波跟踪算法

  2. 为提升融合梯度直方图特征和颜色属性特征的有效卷积操作跟踪算法(ECO-HC)的跟踪精度和速度, 提出一种融合上下文和重定位的加权相关滤波跟踪方法。根据梯度直方图和颜色属性的不同特性加权融合相关滤波响应值, 采用自适应迭代方法预测目标位置; 融合多尺度搜索区域, 目标上下文特征和目标预测失败时重定位方法进一步提高跟踪精度。在标准数据集OTB-100上进行算法评估, 实验结果表明, 所提算法的平均距离精度为89.2%, 平均重叠率精度为80.6%, 比ECO-HC算法分别高3.6%和2.1%。中央处
  3. 所属分类:其它

    • 发布日期:2021-02-24
    • 文件大小:11534336
    • 提供者:weixin_38519387
  1. 特征权值与尺度自适应的核相关跟踪算法

  2. 提出了一种特征权值与尺度自适应的核相关跟踪算法。提取目标搜索区域的方向梯度直方图(HOG)特征和颜色名(CN)特征进行自适应权值融合,通过融合特征的相关滤波响应图的峰值找到目标位置;利用权值较大特征的相关滤波响应图的峰值和峰值旁瓣比的乘积作为尺度评估依据,对目标尺度进行粗略估计和精确估计,从而得到目标的最佳尺度。通过在目标跟踪标准(OTB-2013)数据集上的仿真实验,结果表明相比核相关滤波跟踪算法以及其他5种跟踪算法,所提算法在跟踪精度和成功率方面都有明显提高,跟踪精度为0.799,成功率为0
  3. 所属分类:其它

    • 发布日期:2021-02-13
    • 文件大小:5242880
    • 提供者:weixin_38503483
  1. 基于自适应多层卷积特征决策融合的目标跟踪

  2. 针对在复杂环境中目标尺度变化、形状变化以及场景光照变化、背景干扰等因素导致的目标跟踪稳定性下降问题,提出一种基于自适应多层卷积特征决策融合的目标跟踪算法。首先,通过卷积神经网络VGG-Net-19提取目标候选区域的多层卷积特征;其次,在相关滤波模型框架下,利用这些卷积特征构建多个弱跟踪器;接着,根据每个弱跟踪器的决策损失变化自适应地调节它们的决策权重,完成基于多层卷积特征的目标位置估计;然后,根据尺度相关滤波模型在目标中心区域进行多尺度采样,并利用相邻帧的尺度变化先验分布完成对目标尺度的预测。选
  3. 所属分类:其它

    • 发布日期:2021-02-11
    • 文件大小:5242880
    • 提供者:weixin_38557935
  1. 基于双模型融合的自适应目标跟踪算法

  2. 针对目标跟踪过程中的光照变化、背景混乱和目标形变等问题,提出一种背景抑制的HS直方图和核相关滤波双模型融合的自适应跟踪算法.首先引入非线性核相关滤波跟踪模型;其次提出背景抑制的HS颜色直方图跟踪模型,通过分离亮度分量以减小光照干扰,并采用背景加权突出目标信息;然后提出一种自适应融合策略,根据目标与背景的HS特征相似度来动态调整两个模型融合权重,以降低背景混乱和目标姿态变化的影响;最后针对目标尺度变化问题,采用尺度金字塔估计策略进行解决.在多个公开数据集下的对比实验表明,与现,有算法相比,提出的算
  3. 所属分类:其它

    • 发布日期:2021-02-08
    • 文件大小:1048576
    • 提供者:weixin_38548507
  1. 基于分层卷积特征的自适应目标跟踪

  2. 针对目标跟踪中出现的尺度变化、旋转和遮挡等问题, 提出了基于分层卷积特征的自适应目标跟踪算法。利用卷积神经网络提取分层卷积特征, 利用相关滤波算法获取卷积特征响应图, 并通过响应图的加权融合估计目标位置。利用一种边缘检测算法实现尺度自适应跟踪。利用峰旁比判断目标的置信度, 解决遮挡情况下的模板更新问题。利用OTB2013数据集测试所提出的算法, 测试得到所提出算法的整体成功率、精确度分别为0.618, 0.861, 在目标发生尺度变化、旋转和遮挡等情况下, 该算法可以准确、可靠地跟踪目标。
  3. 所属分类:其它

    • 发布日期:2021-02-07
    • 文件大小:23068672
    • 提供者:weixin_38603259
  1. 基于多层卷积特征融合的目标尺度自适应稳健跟踪

  2. 针对复杂跟踪条件下目标的稳健跟踪和精确尺度估计问题,提出了一种基于多层卷积特征融合的目标尺度自适应稳健跟踪算法。算法首先利用VGG-Net-19深层卷积网络架构提取目标候选区域的多层卷积特征,通过相关滤波算法构建二维定位滤波器,得到多层卷积特征并进行加权融合,从而确定目标的中心位置;然后通过对目标区域进行多尺度采样,提取其梯度方向直方图特征构建一维尺度相关滤波器,确定目标的最佳尺度。实验结果表明,与6种当前主流跟踪算法相比,该算法取得了最好的跟踪成功率与精度,同时在跟踪过程中较好地实现了对目标快
  3. 所属分类:其它

    • 发布日期:2021-02-04
    • 文件大小:13631488
    • 提供者:weixin_38565480
  1. 基于在线检测和尺度自适应的相关滤波跟踪

  2. 针对相关滤波跟踪在遮挡及目标尺度变化等情况下容易跟踪失败的问题, 提出一种基于在线检测和尺度自适应的相关滤波跟踪算法。相关滤波跟踪器融合方向梯度直方图特征、颜色属性特征和光照不变特征进行目标定位;通过局部稀疏表示模型的重构残差进行遮挡判别, 如果发生遮挡则进行在线支持向量机检测, 实现目标重定位;进行由粗至精的尺度估计, 通过尺度预估计和牛顿迭代法得到目标的精确尺度。采用均衡的模型更新策略, 固定更新相关滤波器, 保守更新稀疏表示模型和支持向量机。实验结果表明:与现有跟踪算法相比, 所提算法能有
  3. 所属分类:其它

    • 发布日期:2021-02-04
    • 文件大小:15728640
    • 提供者:weixin_38638312
  1. 特征融合的尺度自适应相关滤波跟踪算法

  2. 为提高相关滤波(CF)跟踪算法的稳健性,并克服传统CF方法无法处理目标尺度变化以及未利用图像颜色特征等问题,提出了一种基于融合颜色特征的尺度自适应相关滤波改进跟踪算法。首先,将目标搜索区域从3原色(RGB)颜色空间转换到Lab颜色空间,提取搜索区域的Lab 3通道颜色特征;然后,融合Lab颜色特征与方向梯度直方图(HOG)特征得到多通道特征,利用核相关滤波(KCF)计算输出响应图并寻找图中最大响应位置即目标位置;最后,基于Lab颜色特征建立尺度模型,从当前帧的目标位置处截取不同尺度图像块,通过将
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:7340032
    • 提供者:weixin_38636983
  1. 基于核相关滤波器的多目标跟踪算法

  2. 针对多目标跟踪算法中经常会面临的各种挑战, 如相机的突然运动、遮挡、误检和外观相似等情况, 提出一种基于核相关滤波(KCF)的分步关联框架。首先, 该算法采用基于卷积神经网络的目标检测器检测目标, 获得准确的检测结果。然后, 为了更好地预测目标的运动状态, 通过加权融合三种特征的跟踪结果, 为每个目标建立一个基于KCF算法的快速跟踪器。此外, 为了有效地降低碎片化轨迹的数量, 该算法通过跟踪片的置信度分步关联轨迹, 并在遮挡的情况下, 利用在线随机蕨重新检测目标。最后利用关联成功的检测信息自适应
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:7340032
    • 提供者:weixin_38706045
  1. 融合多层卷积特征自适应更新的目标跟踪算法

  2. 针对传统手工特征表达能力不足和滤波器模型存在误差累积的影响,提出一种融合多层卷积特征自适应更新的目标跟踪算法。该算法采用分层卷积神经网络提取图像特征,利用线性加权的方法融合多层卷积特征预测目标位置;利用多尺度下目标卷积特征确定目标最佳尺度;利用平均峰值相关能量评价目标响应的置信度,根据相邻两帧目标图像的帧差均值和位移评估目标的运动情况,根据预测位置可信度和目标图像外观变化,调整滤波器模型的学习率。在OTB-2013公开测试集上验证本算法性能,并与现有基于相关滤波的主流运动目标跟踪算法进行相比,实
  3. 所属分类:其它

    • 发布日期:2021-01-26
    • 文件大小:5242880
    • 提供者:weixin_38672739