针对目前视频行人再识别中存在视角、光线变化,背景干扰与遮挡,行人外观与行为相似,以及相同行人在不同模态特征下距离的差异性而导致的匹配不正确问题,提出一种联合多级深度特征表示和有序加权距离融合的视频行人再识别方法。在行人特征表示阶段,提出了行人多级深度特征表示网络,该网络不仅能学习视频序列中行人的时空特征,还能获取行人的全局外观特征和局部外观特征。在有序加权距离融合阶段,将行人的特征表示输入到距离测度学习中,分别计算行人在三类特征下的独立距离,并将距离排序后,根据距离的排名优化距离权值,最后融合三