基于马尔可夫随机场(MRF)的方法已广泛用于高空间分辨率(HSR)图像分类中。 但是,许多现有的基于MRF的方法更加注重像素级上下文,而较少关注超像素级上下文信息。 为了解决这个问题,本文提出了一种新颖的双层上下文MRF框架,称为BLC-MRF,用于HSR图像分类。 具体来说,将像素和超像素级别的依赖关系合并到建议的MRF模型中,以充分利用光谱空间上下文信息并保留HSR图像中的对象边界。 在BLC-MRF中,首先执行像素级MRF模型,然后级联作为超像素级MRF的输入。 在超像素级别,分别使用超像