点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 用于监督超光谱图像分类的光谱空间域特定卷积深度极限学习机
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
用于监督超光谱图像分类的光谱空间域特定卷积深度极限学习机
光谱空间特征提取对高光谱图像(HSI)分类非常重要。 与传统的特征提取方法不同,诸如卷积神经网络(CNN)之类的深度学习模型可以自动学习光谱空间判别特征。 但是,深度学习模型通常需要构建一个庞大而复杂的网络,并且培训非常耗时。 为了解决这些问题,本文提出了一种谱空间特定的卷积深度极限学习机(ELM),称为S2CDELM,用于HSI分类。 首先,利用局部感受域(LRF)的概念,构造了具有两个分支的光谱空间卷积学习模块,分别用于光谱和空间特征提取。 具体地,通过使用随机卷积节点但不反向传播来构造卷积
所属分类:
其它
发布日期:2021-03-08
文件大小:3145728
提供者:
weixin_38661087