您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. MachineLearning-master-python.zip

  2. 属于网络下载资源,感谢原作者的贡献。 ##目录介绍 - **DeepLearning Tutorials** 这个文件夹下包含一些深度学习算法的实现代码,以及具体的应用实例,包含: Keras使用进阶。介绍了怎么保存训练好的CNN模型,怎么将CNN用作特征提取,怎么可视化卷积图。 [keras_usage]介绍了一个简单易用的深度学习框架keras,用经典的Mnist分类问题对该框架的使用进行说明,训练一个CNN,总共不超过30行代码。 将卷积神经网络CNN应用于人脸识别的一个demo,人脸数
  3. 所属分类:专业指导

    • 发布日期:2016-07-04
    • 文件大小:1048576
    • 提供者:qq_33042687
  1. 机器学习KNN算法的Python实现

  2. 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。
  3. 所属分类:Python

    • 发布日期:2018-01-12
    • 文件大小:4096
    • 提供者:xjf_whut
  1. 正向最大匹配分词算法及KNN文本分类算法python实现.zip

  2. 压缩包内容包含了文本分词和文本分类所必需的数据集(10000多份文档)、多份词典(包括停用词),python实现代码以及代码生成日志txt文件。
  3. 所属分类:机器学习

    • 发布日期:2019-06-04
    • 文件大小:39845888
    • 提供者:weixin_42432681
  1. python运用sklearn实现KNN分类算法

  2. KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下 最简单的分类算法,易于理解和实现 实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类。 注意 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类 k需要进行自定义,一般选取k<30 距离一般用欧氏距离,即​  通过sklearn对数据使用KNN算法进行分类 代码如下: ## 导入鸢尾花数据集 iris
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:63488
    • 提供者:weixin_38638647
  1. 纯python实现机器学习之kNN算法示例

  2. 前面文章分别简单介绍了线性回归,逻辑回归,贝叶斯分类,并且用python简单实现。这篇文章介绍更简单的 knn, k-近邻算法(kNN,k-NearestNeighbor)。 k-近邻算法(kNN,k-NearestNeighbor),是最简单的机器学习分类算法之一,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似)。 原理 kNN算法的核心思想是用距离最近(多种衡量距离的方式)的k个样本数据来代表目标数据的分类。 具体讲,存在训练样本集
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:218112
    • 提供者:weixin_38508126
  1. 用python实现k近邻算法的示例代码

  2. K近邻算法(或简称kNN)是易于理解和实现的算法,而且是你解决问题的强大工具。 什么是kNN kNN算法的模型就是整个训练数据集。当需要对一个未知数据实例进行预测时,kNN算法会在训练数据集中搜寻k个最相似实例。对k个最相似实例的属性进行归纳,将其作为对未知实例的预测。 相似性度量依赖于数据类型。对于实数,可以使用欧式距离来计算。其他类型的数据,如分类数据或二进制数据,可以用汉明距离。 对于回归问题,会返回k个最相似实例属性的平均值。对于分类问题,会返回k个最相似实例属性出现最多的属性。 k
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:62464
    • 提供者:weixin_38695159
  1. K-近邻算法的python实现代码分享

  2. k-近邻算法概述: 所谓k-近邻算法KNN就是K-Nearest neighbors Algorithms的简称,它采用测量不同特征值之间的距离方法进行分类 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。 k-近邻算法分析 优点:精度高、对异常值不敏感、无数据输入假定。 缺点:计算复杂度高、空间复杂度高。 适用数据范围:数值型和标称
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:150528
    • 提供者:weixin_38730767
  1. Python实现基于KNN算法的笔迹识别功能详解

  2. 本文实例讲述了Python实现基于KNN算法的笔迹识别功能。分享给大家供大家参考,具体如下: 需要用到: Numpy库 Pandas库 手写识别数据 点击此处本站下载。 数据说明: 数据共有785列,第一列为label,剩下的784列数据存储的是灰度图像(0~255)的像素值 28*28=784 KNN(K近邻算法): 从训练集中找到和新数据最接近的K条记录,根据他们的主要分类来决定新数据的类型。 这里的主要分类,可以有不同的判别依据,比如“最多”,“最近邻”,或者是“距离加权”。
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:108544
    • 提供者:weixin_38608866
  1. 基于python实现KNN分类算法

  2. kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。 通俗简单的说,就是将这个样本进行分类,怎么分类,就是用该样本的
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:56320
    • 提供者:weixin_38728277
  1. Python代码实现KNN算法

  2. kNN算法是k-近邻算法的简称,主要用来进行分类实践,主要思路如下: 1.存在一个训练数据集,每个数据都有对应的标签,也就是说,我们知道样本集中每一数据和他对应的类别。 2.当输入一个新数据进行类别或标签判定时,将新数据的每个特征值与训练数据集中的每个数据进行比较,计算其到训练数据集中每个点的距离(下列代码实现使用的是欧式距离)。 3.然后提取k个与新数据最接近的训练数据点所对应的标签或类别。 4.出现次数最多的标签或类别,记为当前预测新数据的标签或类别。 欧式距离公式为: distanc
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:50176
    • 提供者:weixin_38604916
  1. 用Python实现KNN分类算法

  2. 本文实例为大家分享了Python KNN分类算法的具体代码,供大家参考,具体内容如下 KNN分类算法应该算得上是机器学习中最简单的分类算法了,所谓KNN即为K-NearestNeighbor(K个最邻近样本节点)。在进行分类之前KNN分类器会读取较多数量带有分类标签的样本数据作为分类的参照数据,当它对类别未知的样本进行分类时,会计算当前样本与所有参照样本的差异大小;该差异大小是通过数据点在样本特征的多维度空间中的距离来进行衡量的,也就是说,如果两个样本点在在其特征数据多维度空间中的距离越近,则这
  3. 所属分类:其它

    • 发布日期:2020-12-23
    • 文件大小:106496
    • 提供者:weixin_38734492
  1. 【机器学习算法】手动Python实现KNN分类算法,并用iris数据集检验模型效果

  2. 目录一、KNN算法Python实现1、导入包2、 画图,展示不同电影在图上的分布3、训练样本和待测样本准备4、计算待测样本点到每个训练样本点的距离5、查找离待测样本点最近的K个训练样本点的类型6、找出数量最多的类7、写成自定义函数二、鸢尾花(iris)数据集测试1、导入包2、导入数据,划分数据集3、调用写好的KNN函数,并计算查准率、查全率和混淆矩阵 KNN是机器学习十大算法之一,因为原理很好理解,有一句话:“Talk is cheap.Show me the code.” 所以用Python来
  3. 所属分类:其它

    • 发布日期:2020-12-22
    • 文件大小:142336
    • 提供者:weixin_38616033
  1. 利用Python实现kNN算法的代码

  2. 邻近算法(k-NearestNeighbor) 是机器学习中的一种分类(classification)算法,也是机器学习中最简单的算法之一了。虽然很简单,但在解决特定问题时却能发挥很好的效果。因此,学习kNN算法是机器学习入门的一个很好的途径。 kNN算法的思想非常的朴素,它选取k个离测试点最近的样本点,输出在这k个样本点中数量最多的标签(label)。我们假设每一个样本有m个特征值(property),则一个样本的可以用一个m维向量表示: X =( x1,x2,… , xm ),  同样地,测
  3. 所属分类:其它

    • 发布日期:2020-12-31
    • 文件大小:57344
    • 提供者:weixin_38632916
  1. 使用python实现kNN分类算法

  2. k-近邻算法是基本的机器学习算法,算法的原理非常简单: 输入样本数据后,计算输入样本和参考样本之间的距离,找出离输入样本距离最近的k个样本,找出这k个样本中出现频率最高的类标签作为输入样本的类标签,很直观也很简单,就是和参考样本集中的样本做对比。下面讲一讲用python实现kNN算法的方法,这里主要用了python中常用的numpy模块,采用的数据集是来自UCI的一个数据集,总共包含1055个样本,每个样本有41个real的属性和一个类标签,包含两类(RB和NRB)。我选取800条样本作为参考样
  3. 所属分类:其它

    • 发布日期:2020-12-31
    • 文件大小:164864
    • 提供者:weixin_38516956
  1. k-近邻算法概述及其python实现.pptx

  2. 介绍kNN算法,用python实现三个案例,包括简单分类器搭建、约会网站改进、手写字体识别,适合工科生用来介绍算法用
  3. 所属分类:Ubuntu

    • 发布日期:2020-12-29
    • 文件大小:2097152
    • 提供者:qq_39579554
  1. kNN-K最近邻(k-NearestNeighbor)算法的python实现

  2. 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表 该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 KNN方法虽然从原理上也依赖于极限
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:44032
    • 提供者:weixin_38752897
  1. 原生python实现knn分类算法

  2. 一、题目要求 用原生Python实现knn分类算法。 二、题目分析 数据来源:鸢尾花数据集(见附录Iris.txt) 数据集包含150个数据集,分为3类,分别是:Iris Setosa(山鸢尾)、Iris Versicolour(杂色鸢尾)和Iris Virginica(维吉尼亚鸢尾)。每类有50个数据,每个数据包含四个属性,分别是:Sepal.Length(花萼长度)、Sepal.Width(花萼宽度)、Petal.Length(花瓣长度)和Petal.Width(花瓣宽度)。 将得到的数据集
  3. 所属分类:其它

    • 发布日期:2021-01-02
    • 文件大小:429056
    • 提供者:weixin_38641896
  1. Python实现KNN(K-近邻)算法的示例代码

  2. 一、概述 KNN(K-最近邻)算法是相对比较简单的机器学习算法之一,它主要用于对事物进行分类。用比较官方的话来说就是:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例, 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。为了更好地理解,通过一个简单的例子说明。 我们有一组自拟的关于电影中镜头的数据: 那么问题来了,如果有一部电影 X,它的打戏为 3,吻戏为 2。那么这部电影应该属于哪一类? 我们把所有数据通过图表显示出来(圆点代表的是自拟的数据,也称训练集
  3. 所属分类:其它

    • 发布日期:2021-01-21
    • 文件大小:96256
    • 提供者:weixin_38551059
  1. python实现KNN分类算法

  2. 一、KNN算法简介 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。 kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:206848
    • 提供者:weixin_38668672
  1. Python实现KNN邻近算法

  2. 简介 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。 kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于k
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:51200
    • 提供者:weixin_38744557
« 12 »