您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 监督算法比较:针对COGS 118A类的监督算法项目-监督机器学习-源码

  2. 监督机器学习比较 该项目针对类COGS118A-监督机器学习算法完成 该项目的目的是比较三种主流监督式机器学习算法的相对性能: 线性支持向量机-决策树-随机森林 在三个不同的数据集上对模型进行了训练,都可以从UC Irvine的机器学习存储库中进行访问: --- 每个模型都经过了一系列火车测试的测试,分为20%火车/ 80%测试,50/50和80/20。此外,每种算法都通过GridSearch使用各自的优化超参数进行了训练。 该项目包括一个以流行的机器学习会议NeurIPS风格编写的报告。
  3. 所属分类:其它

    • 发布日期:2021-02-17
    • 文件大小:1048576
    • 提供者:weixin_42172204