针对目标检测与识别在精度和实时性方面的要求, 提出了一种基于改进多尺度特征图的目标快速检测与识别算法。算法在原始SSD模型的基础上, 利用卷积神经网络自动提取多尺度特征图, 构建了一种有效的卷积特征图融合模块, 同时引入轻量级的压缩型双线性融合方法, 丰富上下文信息。进一步结合通道注意机制, 自适应地学习特征图各通道之间的相互关系, 强调有用信息, 抑制冗余信息, 提高了特征图的判别能力, 将增强后的多尺度特征图用于检测模型。实验结果表明, 与同类算法相比, 所提算法的效率更高, 明显提升了识别